Multibody System Dynamics

, Volume 37, Issue 4, pp 371–412 | Cite as

Degeneracy conditions of the dynamic model of parallel robots

  • Sébastien Briot
  • Georges Pagis
  • Nicolas Bouton
  • Philippe Martinet


Despite their well-known advantages in terms of higher intrinsic rigidity, larger payload-to-weight ratio, and higher velocity and acceleration capacities, parallel robots have drawbacks. Among them, the most important one is surely the presence of singularities in the workspace, which divide the workspace into different aspects (each aspect corresponding to one or more assembly modes) and near which the performance is considerably reduced.

In order to increase the reachable workspace of parallel robots, a promising solution consists in the definition of optimal trajectories passing through the singularities to change either the leg working modes or the robot assembly modes. Previous works on the field have shown that it is possible to define optimal trajectories that allow the passing through the robot type 2 singularities. Such trajectories must respect a physical criterion that can be obtained through the analysis of the degeneracy conditions of the parallel robot inverse dynamic model.

However, the mentioned works were not complete: they lacked a degeneracy condition of the parallel robot inverse dynamic model, which is not due to type 2 singularity anymore, but to a serial singularity. Crossing a serial singularity is appealing as in that case we can change the robot leg working mode and then potentially access to other workspace zones. This absence is due to the fact that the authors used a reduced dynamic model, which was not taking into account all link dynamic parameters.

The present paper aims to fill this gap by providing a complete study of the degeneracy conditions of the parallel robot dynamic model and by demonstrating that it is possible to cross the type 2, but also serial singularity, by defining trajectories that respect some given criteria obtained from the analysis of the degeneracy of the robot dynamic model. It also aims to demonstrate that the serial singularities have impacts on the robot effort transmission, which is a point that is usually bypassed in the literature. All theoretical developments are validated through simulations and experiments.


Parallel robot Dynamics Singularity 



This work was sponsored by the French government research program “Investissements d’avenir” through the RobotEx Equipment of Excellence (ANR-10-EQPX-44) and by the French Institute for Advanced Mechanics (IFMA).


  1. 1.
    Merlet, J.P.: Parallel Robots, 2nd edn. Springer, Berlin (2006) MATHGoogle Scholar
  2. 2.
    Conconi, M., Carricato, M.: A new assessment of singularities of parallel kinematic chains. IEEE Trans. Robot. 25(4), 757–770 (2009) CrossRefGoogle Scholar
  3. 3.
    Gosselin, C.M., Angeles, J.: Singularity analysis of closed-loop kinematic chains. IEEE Trans. Robot. Autom. 6(3), 281–290 (1990) CrossRefGoogle Scholar
  4. 4.
    Zlatanov, D., Bonev, I.A., Gosselin, C.M.: Constraint singularities of parallel mechanisms. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 2002), May 2002 (2002) Google Scholar
  5. 5.
    Kong, X., Gosselin, C.M.: A class of 3-dof translational parallel manipulators with linear input-output equations. In: Proceedings of the Workshop on Fundamental Issues and Future Research Directions for Parallel Mechanisms and Manipulators, Québec City, QC, Canada, pp. 3–4 (2002) Google Scholar
  6. 6.
    Gogu, G.: Structural synthesis of fully-isotropic translational parallel robots via theory of linear transformations. Eur. J. Mech. A, Solids 23(6), 1021–1039 (2004) CrossRefMATHGoogle Scholar
  7. 7.
    Carricato, M., Parenti-Castelli, V.: Singularity-free fully-isotropic translational parallel manipulators. Int. J. Robot. Res. 21(2), 161–174 (2002) CrossRefGoogle Scholar
  8. 8.
    Gosselin, C.M.: Compact dynamic models for the tripteron and quadrupteron parallel manipulators. Proc. Inst. Mech. Eng., Part I, J. Syst. Control Eng. 223(1), 1–11 (2009) CrossRefGoogle Scholar
  9. 9.
    Kong, X., Gosselin, C.M.: Forward displacement analysis of a quadratic 4-dof 3T1R parallel manipulator: The Quadrupteron. Meccanica 46(1), 147–154 (2011) MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Rizk, R., Munteanu, M.Gh., Fauroux, J.C., Gogu, G.: A semi-analytical stiffness model of parallel robots from the Isoglide family via the sub-structuring principle. In: Proceedings of the 12th IFToMM World Congress, Besançon, France (2007) Google Scholar
  11. 11.
    Seward, N., Bonev, I.A.: A new 6-dof parallel robot with simple kinematic model. In: Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA 2014), Hong Kong, China (2014) Google Scholar
  12. 12.
    Briot, S., Pashkevich, A., Chablat, D.: Optimal technology-oriented design of parallel robots for high-speed machining applications. In: Proceedings of the 2010 IEEE International Conference on Robotics and Automation (ICRA 2010), Anchorage, Alaska, USA (2010) Google Scholar
  13. 13.
    Liu, X.-J., Wang, J., Pritschow, G.: Performance atlases and optimum design of planar 5R symmetrical parallel mechanisms. Mech. Mach. Theory 41(2), 119–144 (2006) MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Yi, B.Y., Freeman, R.A., Tesar, D.: Force and stiffness transmission in redundantly actuated mechanisms: The case for a spherical shoulder mechanism. In: Robotics, Spatial Mechanisms, Mechanical Systems, vol. 45, pp. 163–172 (1994) Google Scholar
  15. 15.
    Kurtz, R., Hayward, V.: Multiple-goal kinematic optimization of a parallel spherical mechanism with actuator redundancy. IEEE Trans. Robot. Autom. 8(5), 644–651 (1992) CrossRefGoogle Scholar
  16. 16.
    Muller, A.: Internal preload control of redundantly actuated parallel manipulators—its application to backlash avoiding control. IEEE Trans. Robot. 21(4), 668–677 (2005) CrossRefGoogle Scholar
  17. 17.
    Kotlarski, J., Trung, D.T., Heimann, B., Ortmaier, T.: Optimization strategies for additional actuators of kinematically redundant parallel kinematic machines. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 2010), pp. 656–661 (2010) Google Scholar
  18. 18.
    Arakelian, V., Briot, S., Glazunov, V.: Increase of singularity-free zones in the workspace of parallel manipulators using mechanisms of variable structure. Mech. Mach. Theory 43(9), 1129–1140 (2008) CrossRefMATHGoogle Scholar
  19. 19.
    Rakotomanga, N., Chablat, D., Caro, S.: Kinetostatic performance of a planar parallel mechanism with variable actuation. In: Advances in Robot Kinematics (2008) Google Scholar
  20. 20.
    Bourbonais, F., Bigras, P., Bonev, I.A.: Minimum-time trajectory planning and control of a reconfigurable pick-and-place parallel robot. IEEE/ASME Trans. Mechatron. 20(2), 740–749 (2015) CrossRefGoogle Scholar
  21. 21.
    Campos, L., Bourbonais, F., Bonev, I.A., Bigras, P.: Development of a five-bar parallel robot with large workspace. In: Proceedings of the ASME 2010 International Design Engineering Technical Conferences, Montréal, QC, Canada (2010) Google Scholar
  22. 22.
    Zein, M., Wenger, P., Chablat, D.: Non-singular assembly-mode changing motions for 3-RPR parallel manipulators. Mech. Mach. Theory 43(4), 480–490 (2008) CrossRefMATHGoogle Scholar
  23. 23.
    Briot, S., Arakelian, V.: Optimal force generation of parallel manipulators for passing through the singular positions. Int. J. Robot. Res. 27(8), 967–983 (2008) CrossRefGoogle Scholar
  24. 24.
    Kemal Ider, S.: Inverse dynamics of parallel manipulators in the presence of drive singularities. Mech. Mach. Theory 40, 33–44 (2005) MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Hesselbach, J., Wrege, J., Raatz, A., Becker, O.: Aspects on the design of high precision parallel robots. Assem. Autom. 24(1), 49–57 (2004) CrossRefGoogle Scholar
  26. 26.
    Briot, S., Arakelian, V., Guegan, S.: Design and prototyping of a partially decoupled 4-dof 3t1r parallel manipulator with high-load carrying capacity. J. Mech. Des. 130(12), 122303 (2008) CrossRefGoogle Scholar
  27. 27.
    Briot, S., Gautier, M.: Global identification of joint drive gains and dynamic parameters of parallel robots. Multibody Syst. Dyn. 33(1), 3–26 (2015) MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Ibrahim, O., Khalil, W.: Inverse and direct dynamic models of hybrid robots. Mech. Mach. Theory 45, 627–640 (2010) CrossRefMATHGoogle Scholar
  29. 29.
    Khalil, W., Dombre, E.: Modeling, Identification and Control of Robots. Hermes Penton, London (2002) MATHGoogle Scholar
  30. 30.
    Pfurner, M., Husty, M.L.: Implementation of a new and efficient algorithm for the inverse kinematics of serial 6R chains. In: New Trends in Mechanism Science, pp. 91–98. Springer, Berlin (2010) CrossRefGoogle Scholar
  31. 31.
    Bonev, I.A.: Geometric analysis of parallel mechanisms. PhD thesis, Université Laval, QC, Canada (Nov 2002) Google Scholar
  32. 32.
    Caro, S., Moroz, G., Gayral, T., Chablat, D., Chen, C.: Singularity analysis of a six-dof parallel manipulator using Grassmann–Cayley algebra and Gröbner bases. In: Proceedings of the Symposium on Brain, Body and Machine, Montreal, QC, Canada, pp. 10–12 (2010) Google Scholar
  33. 33.
    Huang, T., Wang, M., Yang, S., Sun, T., Chetwynd, D.G., Xie, F.: Force/motion transmissibility analysis of six degree of freedom parallel mechanisms. J. Mech. Robot. 6(3), 031010 (2014) CrossRefGoogle Scholar
  34. 34.
    Chang, W.T., Lin, C.C., Lee, J.J.: Force transmissibility performance of parallel manipulators. J. Robot. Syst. 20(11), 659–670 (2003) CrossRefMATHGoogle Scholar
  35. 35.
    Wang, J.S., Wu, C., Liu, X.J.: Performance evaluation of parallel manipulators: Motion/force transmissibility and its index. Mech. Mach. Theory 45(10), 1462–1476 (2010) MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Gautier, M.: Dynamic identification of robots with power model. In: Proceedings IEEE ICRA, Albuquerque, USA, pp. 1922–1927 (1997) Google Scholar
  37. 37.
    Pagis, G., Bouton, N., Briot, S., Martinet, P.: Design of a controller for enlarging parallel robots workspace through Type 2 singularity crossing. In: Proceedings of 2014 IEEE International Conference on Robotics and Automation (ICRA 2014), Hong Kong, China (2014) Google Scholar
  38. 38.
    Gautier, M., Vandanjon, P., Presse, C.: Identification of inertial and drive gain parameters of robots. In: Proceedings IEEE CDC, Lake Buena Vista, FL, USA, pp. 3764–3769 (1994) Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Sébastien Briot
    • 1
  • Georges Pagis
    • 1
    • 2
    • 3
  • Nicolas Bouton
    • 3
  • Philippe Martinet
    • 1
    • 2
  1. 1.Institut de Recherche en Communications et Cybernétique de NantesIRCCyN, UMR CNRS 6597NantesFrance
  2. 2.École Centrale NantesIRCCyN, UMR CNRS 6597NantesFrance
  3. 3.Institut Français de Mécanique Avancée (IFMA)Institut Pascal – UMR CNRS 6602Clermont-FerrandFrance

Personalised recommendations