Skip to main content
Log in

Dynamics of planar rocking-blocks with Coulomb friction and unilateral constraints: comparisons between experimental and numerical data

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

This paper concerns the dynamics of planar rocking blocks, which are mechanical systems subject to two unilateral constraints with friction. A recently introduced multiple impact law that incorporates Coulomb friction is validated through comparisons between numerical simulations and experimental data obtained elsewhere by other authors. They concern the free-rocking motion with no base excitation, and motions with various base excitations for the study of the onset of rocking and of the overturning phenomenon. The comparisons made for free-rocking and for the onset of rocking demonstrate that the proposed impact model allows one to correctly predict the block motions. Especially the free-rocking experiments can be used to fit the impact law parameters (restitution and friction coefficients, block width). The free-rocking fitted parameters are then used in the excited-base cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. The power of the potential energies ratio E ji (P n,j ,P n,i ) is inverted in [33, 34].

  2. All the experimental data used for the comparisons with numerical data presented in this paper have been made available to us by Dr. F. Pena from the Instituto di Ingenieria, UNAM, Mexico. They correspond to the data in the various figures and tables in [42, 43]. They can be consulted in Tables 3–8 in [63].

  3. Perfect rocking means that the block rocks without any tangential slip, and with no rebound at the impacting corners.

  4. It is important to notice here that the experiments in [43] have been led for a discrete set of amplitude values, for obvious experimental constraints. Thus, the experimentally obtained minimum amplitudes, for a given frequency, are necessarily larger than the numerical ones, which have been computed from a much finer set of amplitude values. This explains the discrepancies between the red dots and the triangles in Fig. 8(a).

References

  1. Al Abadi, H., Lam, N., Gad, E.: A simple displacement-based model for predicting seismically induced overturning. J. Earthq. Eng. 10(6), 775–814 (2006)

    Article  Google Scholar 

  2. Acary, V., Brogliato, B.: Numerical Simulation for Nonsmooth Dynamical Systems. Lecture Notes in Applied and Computational Mechanics, vol. 35. Springer, Heidelberg (2008)

    Google Scholar 

  3. Acikgoz, S., DeJong, M.: The interaction of elasticity and rocking in flexible structures allowed to uplift. Earthq. Eng. Struct. Dyn. 41(15), 2177–2194 (2012). doi:10.1002/eqe.2181

    Google Scholar 

  4. Andreaus, U., Casini, P.: On the rocking-uplifting motion of a rigid block in free and forced motion: influence of sliding and bouncing. Acta Mech. 138, 219–241 (1999)

    Article  MATH  Google Scholar 

  5. Andreaus, U., Casini, P.: Dynamics of three-block assemblies with unilateral deformable contacts. Part 1: contact modelling. Earthq. Eng. Struct. Dyn. 28, 1621–1636 (1999)

    Article  Google Scholar 

  6. Antonyuk, S., Heinrich, S., Tomas, J., Deen, N.G., van Buijtenen, M.S., Kuipers, J.A.M.: Energy absorption during compression and impact of dry elastic-plastic spherical granules. Granul. Matter 12(1), 15–47 (2010)

    Article  MATH  Google Scholar 

  7. Aslam, M., Godden, W.G., Scalise, D.T.: Earthquake rocking response of rigid bodies. J. Struct. Eng. 106(2), 377–392 (1980)

    Google Scholar 

  8. Bernasconi, D.J., Fandrich, M.E., Hogue, C.: Experimental 3-D impact analysis. Multibody Syst. Dyn. 1(4), 361–379 (1997)

    Article  Google Scholar 

  9. Bowling, A., Montrallo Flickinger, D., Harmeyer, S.: Energetically consistent simulation of simultaneous impacts and contacts in multibody systems with friction. Multibody Syst. Dyn. 22(1), 27–45 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Brogliato, B.: Nonsmooth Mechanics, 2nd edn. Springer, London (1999)

    Book  MATH  Google Scholar 

  11. Brogliato, B., Zhang, H., Liu, C.: Analysis of a generalized kinematic impact law for multibody-multicontact systems, with application to the planar rocking block and chains of balls. Multibody Syst. Dyn. 27, 351–382 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  12. Crook, A.W.: A study of some impacts between metal bodies by a piezo-electric method. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 212(1110), 377–390 (1952). 7

    Article  Google Scholar 

  13. Cross, R.: The bounce of a ball. Am. J. Phys. 67(3), 222–227 (1999)

    Article  MathSciNet  Google Scholar 

  14. Dimitrakopoulos, E.G., DeJong, M.J.: Revisiting the rocking block: closed-form solutions and similarity laws. Proc. R. Soc. A (2012). doi:10.1098/rspa.2012.0026

    MATH  Google Scholar 

  15. Djerassi, S.: Collision with friction. Part A: Newton’s hypothesis. Multibody Syst. Dyn. 29, 37–54 (2009)

    Article  MathSciNet  Google Scholar 

  16. ElGawady, M.A., Ma, Q., Butterworth, J.W., Ingham, J.: Effects of interface material on the performance of free rocking blocks. Earthq. Eng. Struct. Dyn. 40(4), 375–392 (2011)

    Article  Google Scholar 

  17. Fielder, W.T., Virgin, L.N., Plaut, R.H.: Experiments and simulation of overturning of an asymmetric rocking block on an oscillating foundation. Eur. J. Mech. A, Solids 16(5), 905–923 (1997)

    MATH  Google Scholar 

  18. Montrallo Flickinger, D., Bowling, A.: Simultaneous oblique impacts and contacts in multibody systems with friction. Multibody Syst. Dyn. 23(3), 249–261 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  19. Flores, P., Ambrosio, J.: On the contact detection for contact-impact analysis in multibody systems. Multibody Syst. Dyn. 24(1), 103–122 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  20. Glocker, Ch.: Concepts for modeling impacts without friction. Acta Mech. 168, 1–19 (2004)

    Article  MATH  Google Scholar 

  21. Goldsmith, W.: Impact. The Theory and Physical Behaviour of Colliding Solids. Edward Arnold Publishers, London (1960)

    MATH  Google Scholar 

  22. Housner, G.W.: The behaviour of inverted pendulum structures during earthquakes. Bull. Seismol. Soc. Am. 53(2), 403–417 (1963)

    Google Scholar 

  23. Imre, B., Rabsamen, S., Springman, S.M.: A coefficient of restitution of rock materials. Comput. Geosci. 37, 339–350 (2008)

    Article  Google Scholar 

  24. Ishiyama, Y.: Motions of rigid bodies and criteria for overturning by earthquake excitations. Earthq. Eng. Struct. Dyn. 10, 635–650 (1982)

    Article  Google Scholar 

  25. Jeong, M.Y., Suzuki, K., Yim, S.C.S.: Chaotic rocking behavior of freestanding objects with sliding motion. J. Sound Vib. 262, 1091–1112 (2003)

    Article  Google Scholar 

  26. Konstantinidis, D., Makris, N.: Experimental and analytical studies on the responses of 1/4-scale models of freestanding laboratory equipment subjected to strong earthquake shaking. Bull. Earthq. Eng. 8, 1457–1477 (2010)

    Article  Google Scholar 

  27. Kounadis, A.N.: On the overturning instability of a rectangular rigid block under ground excitation. Open. Mech. J. 4, 43–57 (2010)

    Article  Google Scholar 

  28. Kounadis, A.N., Papadopoulos, G.J., Cotsovos, D.M.: Overturning instability of a two-rigid block system under a ground excitation. Z. Angew. Math. Mech. (2012). doi:10.1002/zamm.201100095

    MATH  Google Scholar 

  29. Lankarani, H.M., Pereira, M.F.O.S.: Treatment of impact with friction in planar multibody mechanical systems. Multibody Syst. Dyn. 6(3), 203–227 (2001)

    Article  MATH  Google Scholar 

  30. Leine, R.I., Brogliato, B., Nijmeijer, H.: Periodic motion and bifurcations induced by the Painlevé paradox. Eur. J. Mech. A, Solids 21, 869–896 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  31. Leine, R., van de Wouw, N.: Stability properties of equilibrium sets of non-linear mechanical systems with dry friction and impact. Nonlinear Dyn. 51, 551–583 (2008)

    Article  MATH  Google Scholar 

  32. Lipscombe, P.R., Pellegrino, S.: Free rocking of prismatic blocks. J. Eng. Mech. 119(7), 1387–1410 (1993)

    Article  Google Scholar 

  33. Liu, C., Zhao, Z., Brogliato, B.: Frictionless multiple impacts in multibody systems. Part I. Theoretical framework. Proc. R. Soc. A, Math. Phys. Eng. Sci. 464(2100), 3193–3211 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  34. Liu, C., Zhao, Z., Brogliato, B.: Energy dissipation and dispersion effects in a granular media. Phys. Rev. E 78(3), 031307 (2008)

    Article  MathSciNet  Google Scholar 

  35. Liu, C., Zhao, Z., Brogliato, B.: Variable structure dynamics in a bouncing dimer. INRIA Research Report 6718 (2008). http://hal.inria.fr/inria-00337482/fr/

  36. Liu, C., Zhao, Z., Brogliato, B.: Frictionless multiple impacts in multibody systems. Part II. Numerical algorithm and simulation results. Proc. R. Soc. A, Math. Phys. Eng. Sci. 465(2101), 1–23 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  37. Makris, N., Zhang, J.: Rocking response and overturning of anchored equipment under seismic excitations. PEER Report 1999/06, Pacific Earthquake Engineering Research Center, College of Engineering, University of California, Berkeley (1999). Available at http://nisee.berkeley.edu/elibrary/Text/1200242

  38. Modarres Najafabadi, S.A., Kovecses, J., Angeles, J.: Impacts in multibody systems: modeling and experiments. Multibody Syst. Dyn. 20(2), 163–176 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  39. Nguyen, N.S., Brogliato, B.: Shock dynamics in granular chains: numerical simulations and comparisons with experimental results. Granul. Matter 14(3), 341–362 (2012)

    Article  Google Scholar 

  40. Nguyen, N.S., Brogliato, B.: Shock dynamics in granular chains: numerical simulations and comparison with experimental tests. INRIA Research Report RR-7636 (2011) http://hal.inria.fr/inria-00597468

  41. Palmeri, A., Makris, N.: Response analysis of rigid structures rocking on viscoelastic foundation. Earthq. Eng. Struct. Dyn. 37, 1039–1063 (2008)

    Article  Google Scholar 

  42. Pena, F., Prieto, F., Lourenço, P.B., Campos Costa, A., Lemos, J.V.: On the dynamics of rocking motion of single rigid-block structures. Earthq. Eng. Struct. Dyn. 36, 2383–2399 (2007)

    Article  Google Scholar 

  43. Pena, F., Lourenço, P.B., Campos-Costa, A.: Experimental dynamic behavior of free-standing multi-block structures under seismic loadings. J. Earthq. Eng. 12, 953–979 (2008)

    Article  Google Scholar 

  44. Pompei, A., Scalia, A., Sumbatyan, M.A.: Dynamics of rigid block due to horizontal ground motion. J. Eng. Mech. 124(7), 713–717 (1998)

    Article  Google Scholar 

  45. Priestley, M.J.N., Evenson, R.J., Carr, A.J.: Seismic response analysis of structures free to rock on their foundations. Bull. N. Z. Soc. Earthq. Eng. 11(3), 141–150 (1978)

    Google Scholar 

  46. Prieto, F., Lourenço, P.B.: On the rocking behavior of rigid objects. Meccanica 40, 121–133 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  47. Purvance, M.D., Anooshehpoor, A., Brune, J.N.: Freestanding block overturning fragilities: numerical simulation and experimental validation. Earthq. Eng. Struct. Dyn. 37, 791–808 (2008)

    Article  Google Scholar 

  48. Rodriguez, A., Bowling, A.: Solution to indeterminate multipoint impact with frictional contact using constraints. Multibody Syst. Dyn. (2012). doi:10.1007/s11044-012-9307-x

    MathSciNet  Google Scholar 

  49. Shenton, H.W.: Criteria for initiation of slide, rock, and slide-rock rigid-body modes. J. Eng. Mech. 122(7), 690–693 (1996)

    Article  Google Scholar 

  50. Spanos, P.D., Koh, A.S.: Rocking of rigid blocks during harmonic shaking. J. Eng. Mech. 110(11), 1627–1642 (1984)

    Article  Google Scholar 

  51. Stevens, A.B., Hrenya, C.M.: Comparison of soft-sphere models to measurements of collision properties during normal impacts. Powder Technol. 154, 99–109 (2005)

    Article  Google Scholar 

  52. Stronge, W.J.: Impact Mechanics. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  53. Taniguchi, T.: Non-linear response analyses of rectangular rigid bodies subjected to horizontal and vertical ground motion. Earthq. Eng. Struct. Dyn. 31, 1481–1500 (2002)

    Article  Google Scholar 

  54. Tso, W.K., Wong, C.M.: Steady state rocking response of rigid blocks. Part 1: Analysis. Part 2: Experiment. Earthq. Eng. Struct. Dyn. 18(1), 89–120 (1989)

    Article  Google Scholar 

  55. Vassiliou, M.F., Makris, N.: Analysis of the rocking response of rigid blocks standing free on a seismically isolated base. Earthq. Eng. Struct. Dyn. 41(2), 177–196 (2012)

    Article  Google Scholar 

  56. Weir, G., Tallon, S.: The coefficient of restitution for normal incident, low velocity particle impacts. Chem. Eng. Sci. 60, 3637–3647 (2005)

    Article  Google Scholar 

  57. Winkler, T., Meguro, K., Yamazaki, F.: Response of rigid body assemblies to dynamic excitation. Earthq. Eng. Struct. Dyn. 24, 1389–1408 (1995)

    Article  Google Scholar 

  58. Wu, C.Y., li, L.Y., Thorton, C.: Energy dissipation during normal impact of elastic and elastic-plastic spheres. Int. J. Impact Eng. 32, 593–604 (2005)

    Article  Google Scholar 

  59. Yilmaz, C., Gharib, M., Hurmuzlu, Y.: Solving frictionless rocking block problem with multiple impacts. Proc. R. Soc. A, Math. Phys. Eng. Sci. 465, 3323–3339 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  60. Yim, C.S., Chopra, A.K., Penzien, J.: Rocking response of rigid blocks to earthquakes. Earthq. Eng. Struct. Dyn. 8(6), 565–587 (1980)

    Article  Google Scholar 

  61. Zhang, J., Makris, N.: Rocking response of anchored blocks under pulse-type motions. J. Eng. Mech. 127(5), 411–529 (2001)

    Article  Google Scholar 

  62. Zhang, J., Makris, N.: Rocking response of free-standing blocks under cycloidal pulses. J. Eng. Mech. 127(5), 473–483 (2001)

    Article  Google Scholar 

  63. Zhang, H., Brogliato, B.: The planar rocking block: analysis of kinematic restitution laws, and a new rigid-body impact model with friction. INRIA Research Report RR-7580 (2011). http://hal.inria.fr/inria-00579231/en/

  64. Zhang, H., Brogliato, B., Liu, C.: Study of the planar rocking-block dynamics without and with friction: critical kinetic angles. J. Comput. Nonlinear Dyn. 8(2), 021002 (2013) (11 pp.)

    Article  Google Scholar 

  65. Zhen, Z., Liu, C., Brogliato, B.: Planar dynamics of a rigid body system with frictional impacts. II. Qualitative analysis and numerical simulations. Proc. R. Soc. A, Math. Phys. Eng. Sci. 465(2107), 2267–2292 (2009)

    Article  MATH  Google Scholar 

  66. Zhen, Z., Liu, C.: The analysis and simulation for three-dimensional impact with friction. Multibody Syst. Dyn. 18(4), 511–530 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  67. Zulli, D., Contento, A., Di Egidio, D.: 3D model of rigid block with a rectangular base subject to pulse-type excitation. Int. J. Non-Linear Mech. (2012). doi:10.1016/j.ijnonlinmec.2011.11.004

    MATH  Google Scholar 

Download references

Acknowledgements

H. Zhang’s work performed while at INRIA, BIPOP project-team, ZIRST Montbonnot, 655 avenue de l’Europe, 38334 Saint Ismier, France. Funded by China Scholarship Council No. 2009601276 and by ANR project Multiple Impact ANR-08-BLAN-0321-01.

The authors are very grateful to Dr. Fernando Pena (Instituto de Ingenieria, UNAM Mexico) for providing them with detailed data from the experiments in [43]. These data have been valuable for achieving this work. This work was performed with the support of the NSFC/ANR project Multiple Impact, ANR-08-BLAN-0321-01, and with support of the NSFC key project (Grant No. 11132001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Brogliato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Brogliato, B. & Liu, C. Dynamics of planar rocking-blocks with Coulomb friction and unilateral constraints: comparisons between experimental and numerical data. Multibody Syst Dyn 32, 1–25 (2014). https://doi.org/10.1007/s11044-013-9356-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-013-9356-9

Keywords

Navigation