Multibody System Dynamics

, Volume 29, Issue 2, pp 119–137 | Cite as

A formulation of kinematic constraints imposed by kinematic pairs using relative pose in vector form



This paper presents a formulation that expresses kinematic pairs in form of holonomic constraints as functions of a measure of the relative position and orientation of the connected bodies expressed in vector form. While formulating the relative position measure is straightforward, expressing a suitable measure of the relative orientation requires some care. The problem is addressed by computing the Euler vector of the product of the actual and prescribed relative rotation matrices. By arbitrarily combining the error measures in up to six independent equations, a general family of holonomic rheonomic constraints can be formulated. The relative motion between the bodies can be constrained or specified component-wise, respectively, resulting in scleronomic or rheonomic constraints. The proposed formulation is implemented in a free, general-purpose multibody solver; numerical applications to generic mechanical and aerospace problems are presented.


Kinematic constraints Kinematic pairs Vector parameterization of rotations 



The implementation in MBDyn was partially sponsored by Hutchinson CdR. Mr. Daniel Benoualid’s support of free multibody software is gratefully acknowledged. The support of Dr. Alessandro Fumagalli in the implementation of the code is also acknowledged.


  1. 1.
    Schiehlen, W.: Multibody system dynamics: roots and perspectives. Multibody Syst. Dyn. 1(2), 149–188 (1997). doi: 10.1023/A:1009745432698 MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Bauchau, O.A., Laulusa, A.: Review of contemporary approaches for constraint enforcement in multibody systems. J. Comput. Nonlinear Dyn. 3(1) (2008). doi: 10.1115/1.2803258
  3. 3.
    Masarati, P., Morandini, M.: An ideal homokinetic joint formulation for general-purpose multibody real-time simulation. Multibody Syst. Dyn. 20(3), 251–270 (2008). doi: 10.1007/s11044-008-9112-8 MATHCrossRefGoogle Scholar
  4. 4.
    Hartenberg, R.S., Denavit, J.: Kinematic Synthesis of Linkages. McGraw-Hill, New York (1964) Google Scholar
  5. 5.
    Angeles, J.: Spatial Kinematic Chains. Springer, Berlin (1982) MATHCrossRefGoogle Scholar
  6. 6.
    Angeles, J.: Fundamentals of Robotic Mechanical Systems—Theory, Methods, and Algorithms, 3rd edn. Springer, Berlin (2007) MATHCrossRefGoogle Scholar
  7. 7.
    Bauchau, O.A.: Flexible Multibody Dynamics. Springer, Dordrecht (2010) Google Scholar
  8. 8.
    García de Jalón, J., Serna, M.A., Avilés, R.: Computer method for kinematic analysis of lower-pair mechanisms—I velocities and accelerations. Mech. Mach. Theory 16(5), 543–556 (1981). doi: 10.1016/0094-114X(81)90026-4 CrossRefGoogle Scholar
  9. 9.
    García de Jalón, J., Bayo, E.: Kinematic and Dynamic Simulation of Multibody Systems: The Real Time Challenge. Springer, New York (1994) CrossRefGoogle Scholar
  10. 10.
    García-Vallejo, D., Mayo, J., Escalona, J.L., Domínguez, J.: Modelling three-dimensional rigid-flexible multibody systems by using absolute coordinates. In: 12th IFToMM World Congress, Besançon, France, June 18–21, pp. 1–6 (2007) Google Scholar
  11. 11.
    García-Vallejo, D., Mayo, J., Escalona, J.L., Domínguez, J.: Describing rigid-flexible multibody systems using absolute coordinates. Nonlinear Dyn. 34(1–2), 75–94 (2003). doi: 10.1023/B:NODY.0000014553.98731.8d MATHCrossRefGoogle Scholar
  12. 12.
    Sugiyama, H., Escalona, J.L., Shabana, A.A.: Formulation of three-dimensional joint constraints using the absolute nodal coordinates. Nonlinear Dyn. 31(2), 167–195 (2003). doi: 10.1023/A:1022082826627 MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Hussein, B.A., Weed, D., Shabana, A.A.: Clamped end conditions and cross section deformation in the finite element absolute nodal coordinate formulation. Multibody Syst. Dyn. 21(4), 375–393 (2009). doi: 10.1007/s11044-009-9146-6 MATHCrossRefGoogle Scholar
  14. 14.
    Sugiyama, H., Yamashita, H.: Spatial joint constraints for the absolute nodal coordinate formulation using the non-generalized intermediate coordinates. Multibody Syst. Dyn. 26(1), 15–36 (2011). doi: 10.1007/s11044-010-9236-5 MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Bauchau, O.A., Trainelli, L.: The vectorial parameterization of rotation. Nonlinear Dyn. 32(1), 71–92 (2003). doi: 10.1023/A:1024265401576 MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Pfister, F.: Bernoulli numbers and rotational kinematics. J. Appl. Mech. 65(3), 758–763 (1998). doi: 10.1115/1.2789120 MathSciNetCrossRefGoogle Scholar
  17. 17.
    Betsch, P., Menzel, A., Stein, E.: On the parametrization of finite rotations in computational mechanics. A classification of concepts with application to smooth shells. Comput. Methods Appl. Mech. Eng. 155(3–4), 273–305 (1998). doi: 10.1016/S0045-7825(97)00158-8 MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Borri, M., Trainelli, L., Bottasso, C.L.: On representations and parametrizations of motion. Multibody Syst. Dyn. 4(2–3), 129–193 (2000). doi: 10.1023/A:1009830626597 MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria AerospazialePolitecnico di MilanoMilanoItaly

Personalised recommendations