Skip to main content
Log in

A formulation of kinematic constraints imposed by kinematic pairs using relative pose in vector form

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

This paper presents a formulation that expresses kinematic pairs in form of holonomic constraints as functions of a measure of the relative position and orientation of the connected bodies expressed in vector form. While formulating the relative position measure is straightforward, expressing a suitable measure of the relative orientation requires some care. The problem is addressed by computing the Euler vector of the product of the actual and prescribed relative rotation matrices. By arbitrarily combining the error measures in up to six independent equations, a general family of holonomic rheonomic constraints can be formulated. The relative motion between the bodies can be constrained or specified component-wise, respectively, resulting in scleronomic or rheonomic constraints. The proposed formulation is implemented in a free, general-purpose multibody solver; numerical applications to generic mechanical and aerospace problems are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Also known as “Cardan joint,” or “Hooke’s joint” in the Anglo-Saxon literature, since after Girolamo Cardano’s early description in 1557, Robert Hooke, probably in 1667, realized that the transmitted angular velocity was not uniform.

  2. Although parameter c can be loosely interpreted as a compliance, its value should be as small as possible, with a lower limit only based on matrix conditioning considerations.

References

  1. Schiehlen, W.: Multibody system dynamics: roots and perspectives. Multibody Syst. Dyn. 1(2), 149–188 (1997). doi:10.1023/A:1009745432698

    Article  MathSciNet  MATH  Google Scholar 

  2. Bauchau, O.A., Laulusa, A.: Review of contemporary approaches for constraint enforcement in multibody systems. J. Comput. Nonlinear Dyn. 3(1) (2008). doi:10.1115/1.2803258

  3. Masarati, P., Morandini, M.: An ideal homokinetic joint formulation for general-purpose multibody real-time simulation. Multibody Syst. Dyn. 20(3), 251–270 (2008). doi:10.1007/s11044-008-9112-8

    Article  MATH  Google Scholar 

  4. Hartenberg, R.S., Denavit, J.: Kinematic Synthesis of Linkages. McGraw-Hill, New York (1964)

    Google Scholar 

  5. Angeles, J.: Spatial Kinematic Chains. Springer, Berlin (1982)

    Book  MATH  Google Scholar 

  6. Angeles, J.: Fundamentals of Robotic Mechanical Systems—Theory, Methods, and Algorithms, 3rd edn. Springer, Berlin (2007)

    Book  MATH  Google Scholar 

  7. Bauchau, O.A.: Flexible Multibody Dynamics. Springer, Dordrecht (2010)

    Google Scholar 

  8. García de Jalón, J., Serna, M.A., Avilés, R.: Computer method for kinematic analysis of lower-pair mechanisms—I velocities and accelerations. Mech. Mach. Theory 16(5), 543–556 (1981). doi:10.1016/0094-114X(81)90026-4

    Article  Google Scholar 

  9. García de Jalón, J., Bayo, E.: Kinematic and Dynamic Simulation of Multibody Systems: The Real Time Challenge. Springer, New York (1994)

    Book  Google Scholar 

  10. García-Vallejo, D., Mayo, J., Escalona, J.L., Domínguez, J.: Modelling three-dimensional rigid-flexible multibody systems by using absolute coordinates. In: 12th IFToMM World Congress, Besançon, France, June 18–21, pp. 1–6 (2007)

    Google Scholar 

  11. García-Vallejo, D., Mayo, J., Escalona, J.L., Domínguez, J.: Describing rigid-flexible multibody systems using absolute coordinates. Nonlinear Dyn. 34(1–2), 75–94 (2003). doi:10.1023/B:NODY.0000014553.98731.8d

    Article  MATH  Google Scholar 

  12. Sugiyama, H., Escalona, J.L., Shabana, A.A.: Formulation of three-dimensional joint constraints using the absolute nodal coordinates. Nonlinear Dyn. 31(2), 167–195 (2003). doi:10.1023/A:1022082826627

    Article  MathSciNet  MATH  Google Scholar 

  13. Hussein, B.A., Weed, D., Shabana, A.A.: Clamped end conditions and cross section deformation in the finite element absolute nodal coordinate formulation. Multibody Syst. Dyn. 21(4), 375–393 (2009). doi:10.1007/s11044-009-9146-6

    Article  MATH  Google Scholar 

  14. Sugiyama, H., Yamashita, H.: Spatial joint constraints for the absolute nodal coordinate formulation using the non-generalized intermediate coordinates. Multibody Syst. Dyn. 26(1), 15–36 (2011). doi:10.1007/s11044-010-9236-5

    Article  MathSciNet  MATH  Google Scholar 

  15. Bauchau, O.A., Trainelli, L.: The vectorial parameterization of rotation. Nonlinear Dyn. 32(1), 71–92 (2003). doi:10.1023/A:1024265401576

    Article  MathSciNet  MATH  Google Scholar 

  16. Pfister, F.: Bernoulli numbers and rotational kinematics. J. Appl. Mech. 65(3), 758–763 (1998). doi:10.1115/1.2789120

    Article  MathSciNet  Google Scholar 

  17. Betsch, P., Menzel, A., Stein, E.: On the parametrization of finite rotations in computational mechanics. A classification of concepts with application to smooth shells. Comput. Methods Appl. Mech. Eng. 155(3–4), 273–305 (1998). doi:10.1016/S0045-7825(97)00158-8

    Article  MathSciNet  MATH  Google Scholar 

  18. Borri, M., Trainelli, L., Bottasso, C.L.: On representations and parametrizations of motion. Multibody Syst. Dyn. 4(2–3), 129–193 (2000). doi:10.1023/A:1009830626597

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The implementation in MBDyn was partially sponsored by Hutchinson CdR. Mr. Daniel Benoualid’s support of free multibody software is gratefully acknowledged. The support of Dr. Alessandro Fumagalli in the implementation of the code is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierangelo Masarati.

Appendix: Perturbation of angular error

Appendix: Perturbation of angular error

The perturbation of the angular error of Eq. (8) needs to be computed at the orientation matrix level, namely

(47)

As a consequence, \(\boldsymbol {\epsilon}_{\boldsymbol {\theta}\delta} = \mathbf {R}_{a}^{T}(\boldsymbol {\theta}_{b\delta} - \boldsymbol {\theta}_{a\delta})\). Furthermore, since ϵ θ δ =Γ(ϵ θ )δ ϵ θ ,

(48)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masarati, P. A formulation of kinematic constraints imposed by kinematic pairs using relative pose in vector form. Multibody Syst Dyn 29, 119–137 (2013). https://doi.org/10.1007/s11044-012-9320-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-012-9320-0

Keywords

Navigation