Skip to main content
Log in

Quasi-static analysis of multilayered domains with viscoelastic layer using incremental-layerwise finite element method

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

This paper presents a layerwise finite element formulation for quasi-static analysis of laminated structures with embedded viscoelastic material whose constitutive behavior is represented by the Prony series. To account the time dependence of the constitutive relations of linear viscoelastic materials, the incremental formulation in the temporal domain is used. This approach avoids the use of relaxation functions and mathematical transformations. A computer code based on the presented formulation has been developed to provide the numerical results. The high accuracy of the method is exhibited by comparing the results with existing solutions in the literature and also with those obtained using the ABAQUS software. Finally, and as an application of the presented formulation, the effects of time and load rate on the quasi-static structural response of asphalt concrete (AC) pavements are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bahia, H.U., Anderson, D.A.: Development of the bending beam rheometer: basics and critical evaluation of the rheometer. In: Proc. ASTM Physical Properties of Asphalt Cement Binders Conf., vol. 1241, pp. 28–50 (1995)

    Chapter  Google Scholar 

  • Benedetto, H.D., Olard, F., Sauzéat, C., Delaporte, B.: Linear viscoelastic behavior of bituminous materials: from binders to mixes. Road Mater, Pavement Des. 5, 163–202 (2004)

    Article  Google Scholar 

  • Bert, C.W., Malik, M.: Differential quadrature method in computational mechanics: a review. Appl. Mech. Rev. 49, 1–27 (1996)

    Article  Google Scholar 

  • Boltzmann, L.: Zur theorie der elastischen nachwirkung sitzungsber. Math.-Nat. Kl. Kais. Akad. Wiss. 70, 275 (1878)

    Google Scholar 

  • Bozza, A., Gentili, G.: Inversion and quasi-static problems in linear viscoelasticity. Meccanica 30, 321–335 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  • Chazal, C., Pitti, R.M.: Viscoelastic incremental formulation using creep and relaxation differential approaches. Mech. Time-Depend. Mater. 14, 173–190 (2010)

    Article  Google Scholar 

  • Chazal, C., Pitti, R.M.: Incremental constitutive formulation for time dependent materials: creep integral approach. Mech. Time-Depend. Mater. 15, 239–253 (2011)

    Article  Google Scholar 

  • Chen, E.Y., Pan, G.E., Green, R.: Surface loading of a multilayered viscoelastic pavement: semi-analytical solution. J. Eng. Mech. 35, 517–528 (2009)

    Article  Google Scholar 

  • Christensen, R.M.: Theory of Viscoelasticity: An Introduction. Academic Press, New York (1971)

    Google Scholar 

  • Chupin, O., Chabot, A., Piau, J.M., Duhamel, D.: Influence of sliding interfaces on the response of a layered viscoelastic medium under a moving load. Int. J. Solids Struct. 47, 3435–3446 (2010)

    Article  MATH  Google Scholar 

  • Drozdov, A.D., Dorfmann, A.: A constitutive model in finite viscoelasticity of particle-reinforced rubbers. Meccanica 39, 245–270 (2004)

    Article  MATH  Google Scholar 

  • Dubois, F., Chazal, C., Petit, C.: A finite element analysis of creep-crack growth in viscoelastic media. Mech. Time-Depend. Mater. 2, 269–286 (1999)

    Article  Google Scholar 

  • Dubois, F., Moutou-Pitti, R., Picoux, B., Petit, C.: Finite element model for crack growth process in concrete bituminous. Adv. Eng. Softw. 44, 35–43 (2012)

    Article  Google Scholar 

  • Elseifi, M.A., Al-Qadi, I.L., Yoo, P.J.: Viscoelastic modeling and field validation of flexible pavement. J. Eng. Mech. 132, 172–178 (2006)

    Article  Google Scholar 

  • Ghazlan, G., Caperaa, S., Petit, C.: An incremental formulation for the linear analysis of thin viscoelastic structures using generalized variables. Int. J. Numer. Methods Eng. 38, 3315–3333 (1995)

    Article  MATH  Google Scholar 

  • Gibson, N.H., Schwartz, C.W., Schapery, R.A., Witczak, M.W.: Viscoelastic, viscoplastic, and damage modeling of asphalt concrete in unconfined compression. Transp. Res. Rec. 1860, 3–15 (2003)

    Article  Google Scholar 

  • Grassia, L., D’Amore, A.: The relative placement of linear viscoelastic functions in amorphous glassy polymers. J. Rheol. 53, 339–356 (2009)

    Article  Google Scholar 

  • Grassia, L., D’Amore, A., Simon, S.L.: On the viscoelastic Poisson’s ratio in amorphous polymers. J. Rheol. 54, 1009–1022 (2010)

    Article  Google Scholar 

  • Hu, S., Fujie, Z.: Development of a new interconversion tool for hot mix asphalt (HMA) linear viscoelastic functions. Can. J. Civ. Eng. 37, 1071–1081 (2010)

    Article  Google Scholar 

  • Huang, Y.H.: Pavement Analysis and Design, 2nd edn., p. 77. Pearson/Prentice Hall, Upper Saddle River (2004)

    Google Scholar 

  • Junior, P.C.A., Soares, J.B., Holanda, A.S., Junior, E.P., Junior, F.E.: Dynamic viscoelastic analysis of asphalt pavements using a finite element formulation. Road Mater, Pavement Des. 11, 409–433 (2010)

    Article  Google Scholar 

  • Kim, K.S., Sung Lee, H.: An incremental formulation for the prediction of two-dimensional fatigue crack growth with curved paths. Int. J. Numer. Methods Eng. 72, 697–721 (2007)

    Article  MATH  Google Scholar 

  • Lee, H.J.: Uniaxial constitutive modeling of asphalt concrete using viscoelasticity and continuum damage theory. Ph.D. dissertation, North Carolina State University, Raleigh, NC (1996)

  • Lee, H.J., Kim, Y.R.: A viscoelastic constitutive model for asphalt concrete under cyclic loading. J. Eng. Mech. 124, 32–40 (1998)

    Article  Google Scholar 

  • Lee, C.Y., Liu, D.: An interlaminar stress continuity theory for laminated composite analysis. Comput. Struct. 42, 69–78 (1992)

    Article  MATH  Google Scholar 

  • Malekzadeh, P.: A two-dimensional layerwise-differential quadrature static analysis of thick laminated composite circular arches. Appl. Math. Model. 33, 1850–1861 (2009)

    Article  MATH  Google Scholar 

  • Malekzadeh, P., Setoodehc, A.R., Barmshouri, E.: A hybrid layerwise and differential quadrature method for in-plane free vibration of laminated thick circular arches. J. Sound Vib. 315, 212–225 (2008)

    Article  Google Scholar 

  • Matsunaga, H.: Interlaminar stress analysis of laminated composite beams according to global higher-order deformation theories. Compos. Struct. 55, 105–114 (2002)

    Article  Google Scholar 

  • Olard, F., Benedetto, H.D., Dony, A., Vaniscote, J.C.: Properties of bituminous mixtures at low temperatures and relations with binder characteristics. Mater. Struct. 38, 121–126 (2005)

    Article  Google Scholar 

  • Park, S.W., Shapery, R.A.: Methods of interconversion between linear viscoelastic material functions. Part I: a numerical method based on Prony series. Int. J. Solids Struct. 36, 1653–1675 (1999)

    Article  MATH  Google Scholar 

  • Pellinen, T.K., Witczak, M.W.: Use of stiffness of hot-mix asphalt as a simple performance test. Transp. Res. Rec. 1789, 80–90 (2002)

    Article  Google Scholar 

  • Reddy, J.N.: A generalization of two-dimensional theories of laminated composite plates. Commun. Appl. Numer. Methods 3, 173–180 (1987)

    Article  MATH  Google Scholar 

  • Schapery, R.A.: A theory of crack initiation and growth in viscoelastic media: I. Theoretical development. Int. J. Fract. 11, 141–159 (1975)

    Article  Google Scholar 

  • Setoodeh, A.R., Karami, G.: Static, free vibration and buckling analysis of anisotropic thick laminated composite plates on distributed and point elastic supports using a 3-D layer-wise FEM. Eng. Struct. 26, 211–220 (2004)

    Article  Google Scholar 

  • Setoodeh, A.R., Malekzadeh, P., Nikbin, K.: Low velocity impact analysis of laminated composite plates using a 3D elasticity based layerwise FEM. Mater. Des. 30, 3795–3801 (2009)

    Article  Google Scholar 

  • Shen, Y.P., Hasebe, N., Lee, L.X.: The finite element method of three-dimensional nonlinear viscoelastic large deformation problems. Comput. Struct. 55, 659–666 (1995)

    Article  MATH  Google Scholar 

  • Sorvari, J., Hämäläinen, J.: Time integration in linear viscoelasticity—a comparative study. Mech. Time-Depend. Mater. 14, 307–328 (2010)

    Article  Google Scholar 

  • Sungho, M., Goangseup, Z.: Modeling the viscoelastic function of asphalt concrete using a spectrum method. Mech. Time-Depend. Mater. 14, 191–202 (2010)

    Article  Google Scholar 

  • Tahani, M.: Analysis of laminated composite beams using layerwise displacement theories. Compos. Struct. 79, 535–547 (2007)

    Article  Google Scholar 

  • Taylor, R.L., Pister, K.S., Gourdreau, G.L.: Thermomechanical analysis of viscoelastic solids. Int. J. Numer. Methods Eng. 2, 45–59 (1970)

    Article  MATH  Google Scholar 

  • Theocaris, P.S.: Creep and relaxation contraction ratio of linear viscoelastic materials. J. Mech. Phys. Solids 12, 125–138 (1964)

    Article  Google Scholar 

  • Zocher, M.A., Groves, S.E., Aellen, D.H.: A three-dimensional finite element formulation for thermoviscoelastic orthotropic media. Int. J. Numer. Methods Eng. 40, 2267–2288 (1997)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ameri.

Appendix A

Appendix A

The elements of the stiffness matrices[K ij ], the mass matrices [M ij ], the load vector increments and in Eq. (17) are:

$$\begin{aligned} {[} K_{uu} ] =& A_{p11}^{jr}D_{c}^{is} + B_{p13}^{rj}B_{c}^{is} + B_{p13}^{jr}B_{c}^{si} + D_{p33}^{jr}A_{c}^{is} \end{aligned}$$
(23a)
$$\begin{aligned} {[} K_{uw} ] =& B_{p12}^{rj}B_{c}^{is} + A_{p13}^{jr}D_{c}^{is} + D_{p23}^{jr}A_{c}^{is} + B_{p33}^{jr}B_{c}^{si} \end{aligned}$$
(23b)
$$\begin{aligned} {[} K_{wu} ] =& B_{p12}^{jr}B_{c}^{si} + D_{p23}^{jr}A_{c}^{is} + A_{p13}^{jr}D_{c}^{is} + B_{p33}^{rj}B_{c}^{is} \end{aligned}$$
(23c)
$$\begin{aligned} {[} K_{ww} ] =& D_{p22}^{jr}A_{c}^{is} + B_{p23}^{jr}B_{c}^{si} + B_{p23}^{rj}B_{c}^{is} + A_{p33}^{jr}D_{c}^{is} \end{aligned}$$
(23d)
$$\begin{aligned} & {[}M_{uu} ] = A_{c}^{is}I_{p}^{jr} \end{aligned}$$
(24a)
$$\begin{aligned} &{[} M_{ww} ] = A_{c}^{is}I_{p}^{jr} \end{aligned}$$
(24b)
$$ A_{pmn}^{jr} = \int_{0}^{h} C_{pmn} ( \Delta t_{n} ) \psi_{j} ( z ) \psi_{r} ( z )b\,dz $$
(25)
$$\begin{aligned} & B_{pmn}^{rj} = \int_{0}^{h} C_{pmn} ( \Delta t_{n} ) \psi_{j} ( z ) \frac{d\psi_{r} ( z )}{dz}b\,dz \end{aligned}$$
(26a)
$$\begin{aligned} &{} B_{pmn}^{jr} = \int_{0}^{h} C_{pmn} ( \Delta t_{n} ) \psi_{r} ( z ) \frac{d\psi_{j} ( z )}{dz}b\,dz \end{aligned}$$
(26b)
$$ D_{pmn}^{jr}= \int_{0}^{h} C_{pmn} ( \Delta t_{n} ) \frac{d\psi_{j} ( z )}{dz} \frac{d\psi_{r} ( z )}{dz}b\,dz $$
(27)
$$ A_{c}^{is} = \int_{0}^{L} \varphi_{i} ( x ) \varphi_{s} ( x )\,dx $$
(28)
$$\begin{aligned} B_{c}^{is} =& \int_{0}^{L} \frac{d\varphi_{i} ( x )}{dx} \varphi_{s} ( x )\,dx \end{aligned}$$
(29a)
$$\begin{aligned} B_{c}^{si} =& \int_{0}^{L} \frac{d\varphi_{s} ( x )}{dx} \varphi_{i} ( x )\,dx \end{aligned}$$
(29b)
$$ D_{c}^{is} = \int_{0}^{L} \frac{d\varphi_{i} ( x )}{dx} \frac{d\varphi_{s} ( x )}{dx}\,dx $$
(30)
$$ I_{p}^{jr} = \int_{0}^{h} \rho \psi_{j} ( z )\psi_{r} ( z )b\,dz $$
(31)
$$\begin{aligned} &\{ \Delta f_{u} \}_{t_{n}} = \Delta f_{j} ( t_{n} )\delta_{iNx} \end{aligned}$$
(32a)
$$\begin{aligned} &\{ \Delta f_{w} \}_{t_{n}} = \Delta f_{i} ( t_{n} ) \delta_{iNz} \end{aligned}$$
(32b)
$$\begin{aligned} &\Delta f_{i} ( t_{n} ) = \int_{0}^{L} \Delta q_{T} ( x,t_{n} ) \varphi_{i} ( x )\,dx \end{aligned}$$
(33a)
$$\begin{aligned} &\Delta f_{j} ( t_{n} ) = \int_{0}^{h} \Delta q_{L} ( z,t_{n} ) \psi_{j} ( z )\,dz \end{aligned}$$
(33b)
$$\begin{aligned} &\{ \tilde{f}_{u} \}_{t_{n - 1}} = \tilde{E}_{cxx}E_{c}^{i} + \tilde{f}_{cxz}^{j}f_{c}^{i} \end{aligned}$$
(34a)
$$\begin{aligned} & \{ \tilde{f}_{w} \}_{t_{n - 1}} = \tilde{f}_{czz}^{j}f_{c}^{i} + \tilde{E}_{cxz}^{j}E_{c}^{i} \end{aligned}$$
(34b)
$$\begin{aligned} &\tilde{E}_{cxx}^{j} = \int_{0}^{h} \psi_{j} ( z ) ( \tilde{\sigma}_{xx} )_{t_{n - 1}}b\,dz \end{aligned}$$
(35a)
$$\begin{aligned} &\tilde{E}_{cxz}^{j} = \int_{0}^{h} \psi_{j} ( z ) ( \tilde{\sigma}_{xz} )_{t_{n - 1}}b\,dz \end{aligned}$$
(35b)
$$\begin{aligned} &\tilde{f}_{cxz}^{j} = \int_{0}^{h} \frac{d\psi_{j} ( z )}{dz} ( \tilde{\sigma}_{xz} )_{t_{n - 1}}b\,dz \end{aligned}$$
(36a)
$$\begin{aligned} &\tilde{f}_{czz}^{j} = \int_{0}^{h} \frac{d\psi_{j} ( z )}{dz} ( \tilde{\sigma}_{zz} )_{t_{n - 1}}b\,dz \end{aligned}$$
(36b)
$$ f_{c}^{i} = \int_{0}^{L} \varphi_{i} ( x )\,dx $$
(37)
$$ E_{c}^{i} = \int_{0}^{L} \frac{d\varphi_{i} ( x )}{dx}\,dx = \varphi_{i} ( L ) - \varphi_{i} ( 0 ) $$
(38)

C pmn t n ) is the mth row and nth column from viscoelastic constitutive matrix.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ameri, M., Malakouti, M. & Malekzadeh, P. Quasi-static analysis of multilayered domains with viscoelastic layer using incremental-layerwise finite element method. Mech Time-Depend Mater 18, 275–291 (2014). https://doi.org/10.1007/s11043-013-9227-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-013-9227-z

Keywords

Navigation