Skip to main content
Log in

A micro-to-meso sublaminate model for the viscoelastic analysis of thick-section multi-layered FRP composite structures

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

Classical ply-by-ply analysis of multi-layered thick-section composite structures with tens of layers through the cross-section is often impractical, especially when material nonlinearity and time-dependent effects are included. This study introduces an integrated micromechanical-sublaminate modeling approach for the nonlinear viscoelastic analysis of thick-section and multi-layered composite structures. The sublaminate model is used to generate three-dimensional (3D) effective nonlinear responses at through-thickness material integration points with given spatial variations of strains determined from the trial strain increments of the standard displacement-based finite-element (FE). The number of material integration points is determined by the resolution of the FE discretization of the composite structure. The sublaminate model at a selected material point represents the effective nonlinear continuum behavior in its neighborhood using the 3D lamination theory with uniform in-plane strain and out-of-plane stress patterns through the representative layers. Therefore, the sublaminate has first-order stress and strain paths and cannot recognize the local sequence of the layers. While this approach is very effective approximation especially in the case of a very large number of repeating layers using relatively few elements (integration points) through the thickness, it cannot be used to represent the interlaminar stresses or bending/extension/twisting coupling effects within a sublaminate. A previously developed micromechanical model by the authors for a nonlinear viscoelastic unidirectional lamina is used for each layer in the sublaminate. The proposed modeling approach is first calibrated and verified against creep tests on off-axis glass/epoxy performed by Lou and Schapery (J. Compos. Mater. 5:208–271, 1971). Analyses for different thick-section laminated structures are presented using the integrated sublaminate with both shell and 3D continuum elements. The proposed 3D nonlinear time-dependent sublaminate model is computationally efficient and robust in analyzing multi-layered composite structures having large number of plies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ABAQUS, Hibbitt, Karlsson and Sorensen, Inc.: User’s Manual, Version 6.5 (2005)

  • Aboudi, J.: Micromechanical characterization of the non-linear viscoelastic behavior of resin matrix composites. Compos. Sci. Techol. 38, 371–386 (1990)

    Article  Google Scholar 

  • Aboudi, J.: Mechanics of Composite Materials: A Unified Micromechanical Approach. Elsevier (1991)

  • Aboudi, J., Cederbaum, G.: Analysis of viscoelastic laminated composite plates. Compos. Struct. 12, 243–256 (1989)

    Article  Google Scholar 

  • Arenburg, R.T., Reddy, J.N.: Analysis of metal matrix composite structures-I, micromechanics constitutive theory. Comput. Struct. 40(6), 1357–1368 (1991a)

    Article  MATH  Google Scholar 

  • Arenburg, R.T., Reddy, J.N.: Analysis of metal matrix composite structures-I, laminate analyses. Comput. Struct. 40(6), 1369–1385 (1991b)

    Article  MATH  Google Scholar 

  • Averill, R.C., Yip, Y.C.: Development of simple, robust, finite elements based on refined theories for thick laminated beam. Comput. Struct. 59(3), 529–546 (1996)

    Article  MATH  Google Scholar 

  • Burton, W.S., Noor, A.K.: Three-dimensional solution for thermomechanical stresses in sandwich panels and shells. J. Eng. Mech. 120(20), 2044–2071 (1994)

    Article  Google Scholar 

  • Cho, Y.B., Averill, R.C.: First order zig-zag sublaminate plate theory and finite element model for laminated composite and sandwich panels. Compos. Struct. 50(1), 1–15 (2000)

    Article  Google Scholar 

  • Cho, M., Parmerter, R.R.: Efficient higher-order composite plate theory for general lamination configuration. AIAA J. 31(7), 1299–1306 (1993)

    Article  MATH  ADS  Google Scholar 

  • Chung, P.W., Tamma, K.K., Namburu, R.R.: A finite element coupled thermoviscoelastic creep approach for heterogeneous structures. J. Therm. Stress. 23, 703–729 (2000a)

    Article  Google Scholar 

  • Chung, P.W., Tamma, K.K., Namburu, R.R.: A micro/macro homogenization approach for viscoelastic creep analysis with dissipative corrector for heterogeneous woven fabric layered media. Compos. Sci. Technol. 60, 2233–2253 (2000b)

    Article  Google Scholar 

  • Di Sciuva, M.: An improved shear deformation theory for moderately thick multilayered anisotropic shells and plates. J. Appl. Mech. 54(3), 589–596 (1987)

    MATH  Google Scholar 

  • Fisher, F.T., Brinson, L.C.: Viscoelastic interphases in polymer-matrix composites: Theoretical models and finite element analysis. Compos. Sci. Technol. 61, 731–748 (2001)

    Article  Google Scholar 

  • Gosz, M., Moran, B., Achenbach, J.D.: Effect of a viscoelastic interface on the transverse behavior of fiber-reinforced composites. National Center for Composite Materials Research, UIUC, Technical Report No. 90-07 (1990)

  • Haj-Ali, R.: Nested nonlinear multiscale framework for the analysis of thick-section composite materials and structures. In: Kwon, Y.W., Allen, D.H., Talreja, R. (eds.) Multiscale Modeling and Simulation of Composite Materials and Structures, pp. 332–371. Springer, ISBN 978-0-387-36318-938 (2007)

  • Haj-Ali, R.M., Kilic, M.H.: Nonlinear constitutive models for pultruded FRP composites. Mech. Mater. J. 35(8), 791–801 (2003)

    Article  Google Scholar 

  • Haj-Ali, R., Muliana, A.H.: Micromechanical models for the nonlinear viscoelastic behavior of pultruded composite materials. Int. J. Solids Struct. 40, 1037–1057 (2003)

    Article  MATH  Google Scholar 

  • Haj-Ali, R.M., Muliana, A.H.: Numerical finite element formulation of the schapery nonlinear viscoelastic material model. Int. J. Numer. Method Eng. 59(1), 25–45 (2004a)

    Article  MATH  Google Scholar 

  • Haj-Ali, R.M., Muliana, A.H.: A multi-scale constitutive formulation for the nonlinear viscoelastic analysis of laminated composite materials and structures. Int. J. Solids Struct. 41, 3461–3490 (2004b)

    Article  MATH  Google Scholar 

  • Haj-Ali, R.M., Pecknold, D.A.: Hierarchical material models with microstructure for nonlinear analysis of progressive damage in laminated composite structures. Structural Research Series No. 611, UILU-ENG-96-2007, Department of Civil Engineering, University of Illinois at Urbana-Champaign (1996)

  • Haj-Ali, R.M., Pecknold, D.A., Ahmad, M.F.: Combined micromechanical and structural finite element analysis of laminated composites. ABAQUS Users’ Conference, Achen, Germany, pp. 233–247 (1993)

  • Haj-Ali, R., Kilic, H., Zureick, A.H.: Three-dimensional micromechanics based constitutive framework for analysis of pultruded composite structures. ASCE J. Eng. Mech. 127(7), 653–660 (2001)

    Article  Google Scholar 

  • Herakovich, C.T.: Mechanics of Fibrous Composites. Wiley (1998)

  • Knight Jr., N.F., Starnes Jr., J.H.: Postbuckling behavior of axially compressed graphite-epoxy cylindrical panels with circular holes. ASME J. Press. Vessels Technol. 107 394–402 (1985)

    Article  Google Scholar 

  • Lekhnitskii, S.G., Theory of Elasticity of an Anisotropic Elastic Body, pp. 243–273. Holden-Day, Inc. San Francisco (1963)

    MATH  Google Scholar 

  • Lo, K.H., Christensen, R.M., Wu, E.M.: A higher order theory of plate deformation, Part 2: Laminated plates. J. Appl. Mech. 44, 669–676 (1977)

    MATH  Google Scholar 

  • Lou, Y.C., Schapery, R.A.: Viscoelastic characterization of a nonlinear fiber-reinforced plastic. J. Compos. Mater. 5, 208–234 (1971)

    Article  Google Scholar 

  • Muliana, A.H., Haj-Ali, R.M.: Analysis for creep behavior and collapse of thick-section composite structures. Compos. Struct. 73(3), 331–341 (2006)

    Article  Google Scholar 

  • Muliana, A.H., Haj-Ali, R.M.: Nested nonlinear viscoelastic micromechanical models for the analysis of pultruded composite materials and structures. Mech. Mater. 36, 1087–1110 (2004)

    Article  Google Scholar 

  • Noh, J., Whitcomb, J.: Efficient techniques for predicting viscoelastic behavior of sublaminates. Composite: Part B 34, 727–736 (2003)

    Article  Google Scholar 

  • Pagano, N.J.: Exact moduli of anisotropic laminates. In: Sendeckyj, G.P. (ed.) Mechanics of Composite Materials, pp. 23–44. Academic (1974)

  • Pagano, N.J.: Stress gradients in laminated composite cylinders. J. Compos. Mater. 5, 260–265 (1971)

    Article  Google Scholar 

  • Pecknold, D.A., Haj-Ali, R.: Integrated micromechanical/structural analysis of laminated composites. Mech. Compos. Mater.-Nonlinear Eff. AMD 159, 197–206 (1993)

    Google Scholar 

  • Pecknold, D.A., Rahman, S.: Micromechanics-based structural analysis of thick laminated composites. Comput. Struct. 51(2), 163–179 (1994)

    Article  MATH  ADS  Google Scholar 

  • Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. 2nd edn. CRC Press (2004)

  • Reddy, J.N.: A small strain and moderate rotation theory of laminated anisotropic plates. J. Appl. Mech. 54, 623–626 (1987)

    Article  MATH  Google Scholar 

  • Reddy, J.N.: A simple higher-order theory for laminated composite plates. J. Appl. Mech. 51, 745–752 (1984a)

    MATH  Google Scholar 

  • Reddy, J.N.: A refined nonlinear theory of plates with transverse shear deformation. Int. J. Solids Struct. 20, 881–906 (1984b)

    Article  MATH  Google Scholar 

  • Reissner, E.: On uniform stress and strain in axially homogeneous cylindrical shells. Int. J. Solids Struct. 6, 133–138 (1970)

    Article  MATH  Google Scholar 

  • Robbins, D.H., Reddy, J.N.: Variable kinematic modeling of laminated composite plates. Int. J. Numer. Method Eng. 39, 2283–2317 (1996)

    Article  MATH  Google Scholar 

  • Robbins, D.H., Reddy, J.N.: Modeling thick composites using a layerwise laminate theory. Int. J. Numer. Method Eng. 36, 655–677 (1993)

    Article  MATH  Google Scholar 

  • Robertson, D.D., Mall, S.: A nonlinear micromechanics based analysis of metal matrix composite laminates. Compos. Sci. Technol. 52, 319–331 (1994)

    Article  Google Scholar 

  • Schapery, R.A.: Nonlinear viscoelastic and viscoplastic constitutive equations based on thermodynamics. Mech. Time-Depend. Mater. 1, 209 (1997)

    Article  Google Scholar 

  • Schapery, R.A.: On the characterization of nonlinear viscoelastic materials. Polym. Eng. Sci. 9(4), 295–310 (1969)

    Article  Google Scholar 

  • Tuttle, M.E., Brinson, H.F.: Prediction of the long-term creep compliance of general composite laminates. Exp. Mech. 26, 89–102 (1986)

    Article  Google Scholar 

  • Tuttle, M.E., Pasricha, A., Emery, A.F.: The nonlinear viscoelastic-viscoplastic behavior of IM7/5260 composites subjected to cyclic loading. J. Compos. Mater. 29(15), 2025–2046 (1995)

    Google Scholar 

  • Whitney, J.M., Pagano, N.J.: Shear deformation in heterogeneous anisotropic plates. J. Appl. Mech. 37(4), 1031–1036 (1970)

    MATH  Google Scholar 

  • Whitney, J.M., Sun, C.T.: A higher order theory for extensional motion of laminated composites. J. Sound Vib. 30 85–97 (1973)

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasia Muliana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haj-Ali, R., Muliana, A. A micro-to-meso sublaminate model for the viscoelastic analysis of thick-section multi-layered FRP composite structures. Mech Time-Depend Mater 12, 69–93 (2008). https://doi.org/10.1007/s11043-007-9041-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-007-9041-6

Keywords

Navigation