Skip to main content
Log in

Digital forensics of printed source identification for Chinese characters

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Recently, digital forensics, which involves the collection and analysis of the origin digital device, has become an important issue. Digital content can play a crucial role in identifying the source device, such as serve as evidence in court. To achieve this goal, we use different texture feature extraction methods such as graylevel co-occurrence matrix (GLCM) and discrete wavelet transform (DWT), to analyze the Chinese printed source in order to find the impact of different output devices. Furthermore, we also explore the optimum feature subset by using feature selection techniques and use support vector machine (SVM) to identify the source model of the documents. The average experimental results attain a 98.64 % identification rate which is significantly superior to the existing known method of GLCM by 1.27 %. The superior testing performance demonstrates that the proposed identification method is very useful for source laser printer identification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bulan O, Junwen M, Sharma G (Apr. 2009) “Geometric distortion signatures for printer identification,” in Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.1401–1404

  2. Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Machine Intell PAMI-8:679–698

    Article  Google Scholar 

  3. Chan CS, Chang CC, Vo HP (2012) A User-Friendly Image Sharing Scheme Using JPEG-LS Median Edge Predictor. Journal of Information Hiding and Multimedia Signal Processing 3(4):340–351

    Google Scholar 

  4. Chiclana F, Herrera F, Herrera-Viedma E (1998) Integrating three representation models in fuzzy multipurpose decision making based on fuzzy preference Relations. Fuzzy Set Syst 97:33–48

    Article  MATH  MathSciNet  Google Scholar 

  5. Chinese Calligraphy, http://www.zein.se/patrick/chinen9p.html

  6. Choi JH, Im DH, Lee HY, Oh JT, Ryu JH, Lee HK (Nov. 2009) “Color laser printer identification by analyzing statistical features on discrete wavelet transform,” in Proceedings of IEEE International Conference on Image Processing (ICIP), pp. 1505–1508

  7. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20:273–297

    MATH  Google Scholar 

  8. Cox IJ, Kilian J, Leighton FT, Shamoon T (1997) Secure spread spectrum watermarking for multimedia. IEEE Transactions on Image Processing 6:1673–1687

    Article  Google Scholar 

  9. Cox IJ, Miller ML, Bloom JF, Fridrich J, Kaler T (2008) Digital Watermarking and Steganography. Morgan Kaufmann Publishers, Elsevier

    Google Scholar 

  10. Daubechiesl I, Sweldens W (1998) Factoring wavelet transforms into lifting steps. J Fourier Anal Appl 4(3):247–269

    Article  MathSciNet  Google Scholar 

  11. Elder JH, Zucker SW (1998) Local scale control for edge detection and blur estimation. IEEE Trans Pattern Anal Machine Intell 20:699–716

    Article  Google Scholar 

  12. Haralick RM, Shanmugam K, Dinstein I (1973) “Textural features for image classification,”. IEEE Transactions on Systems, Man, and Cybernetics SMC–3(6):610–621. doi:10.1109/TSMC.1973.4309314

    Article  Google Scholar 

  13. http://apps.carleton.edu/curricular/asln/Chinese/

  14. http://www.library.cornell.edu/preservation/tutorial/contents.html

  15. http://www.moneydj.com/kmdj/news/newsviewer.aspx

  16. http://www.zh.wikpedia.org/wiki/漢字

  17. http://zh.wikipedia.org/wiki/以人口排列的语言列表

  18. Huang HC, Fang WC (2010) Metadata-Based Image Watermarking for Copyright Protection. Simulation Modelling Practice and Theory 18(4):436–445

    Article  Google Scholar 

  19. Khanna N, Mikkilineni AK, Martone AF, Ali GN, Chiu GTC, Allebach JP, Delp EJ (2006) A survey of forensic characterization methods for physical devices. Proceedings of Digital Forensic Research Workshop 3:S17–S28

    Google Scholar 

  20. Kundur D, Lin CY, Macq B, Yu H (June 2004) “Special issue on enabling security technologies for digital rights management,” in Proceedings of the IEEE, pp. 879–882

  21. Mikkilineni AK, Ali GN, Chiang PJ, Chiu GTC, Allebach JP, Delp EJ (2004) Signature-embedding in printed documents for security and forensic applications. Proceedings of the SPIE International Conference on Security, Steganography, and Watermarking of Multimedia Contents 5306:455–466

    Article  Google Scholar 

  22. Mikkilineni AK, Chiang PJ, Ali GN, Chiu GTC, Allebach JP, Delp EJ (2005) Printer identification based on graylevel co-occurrence features for security and forensic applications. Proceedings of the SPIE International Conference on Security 5681:430–440

    Google Scholar 

  23. Pudil P, Novovicova J, Kittler J (1994) “Floating search methods in feature selection,” Pattern Recognition Letters, pp.1119–1125

  24. Ritchey PC, Rego VJ (2012) A Context Sensitive Tiling System for Information Hiding. Journal of Information Hiding and Multimedia Signal Processing 3(3):212–226

    Google Scholar 

  25. Stearns S (1976) “On selecting features for pattern classifiers,” In: 3rd International Conf. Pattern Recognition. Coronado, California, pp.71–75

  26. Talbot V, Perrot P, Murie C (Sep. 2006) “Inkjet printing discrimination based on invariant moments,” in Proceedings of the IS&T’s NIP22: International Conference on Digital Printing Technologies, pp. 427–431

  27. Tsai MJ, Liu J, Wang CS, Chuang CH (May 2011) “Source Color Laser Printer Identification Using Discrete Wavelet Transform and Feature Selection Algorithms,” IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2633–2636

  28. Tsai MJ, Wang CS, Liu J, Yin JS (2012) Using Decision Fusion of Feature Selection in Digital Forensics for Camera Source Model Identification. Computer Standards & Interfaces 34:292–304

    Article  Google Scholar 

  29. Vapnik V (2000) The Nature of Statistical Learning Theory, 2nd edn. Springer-Verlag, Inc., New York

    Book  MATH  Google Scholar 

  30. Villasenor JD, Belzer B, Liao J (1995) Wavelet filter evaluation for image compression. IEEE Transactions on Image Processing 4(8):1053–1060

    Article  Google Scholar 

  31. World Intellectual Property Organization (WIPO), http://www.wipo.int/

  32. Yager RR (1998) “On ordered weighted averaging aggregation operators in multicriteria decision making,”. IEEE Transactions on Systems, Man and Cybernetics 18:183–190

    Article  MathSciNet  Google Scholar 

  33. Zhu B, Wu J, Kankanhalli M (2003) “Print signatures for document authentication”. CCS’03, Washington

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Council in Taiwan, Republic of China, under Grant NSC99-2410-H-009-053-MY2 and NSC101-2410-H-009-006-MY2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min-Jen Tsai.

Appendix

Appendix

The revised/adjusted formulas in this study and in Mikkilineni [15]

 

The formulas in this study

The Formulas in Mikkilineni [15]

Revised formula

\( GLDHenergy={\displaystyle \sum_{k=0}^N GLDM{(k)}^2} \)

\( GLDHenergy={\displaystyle \sum_{k=0}^N GLDM(k)} \)

\( GLSHenergy={\displaystyle \sum_{k=0}^{2N} GLSH{(k)}^2} \)

\( GLSHenergy={\displaystyle \sum_{k=0}^{2N} GLSH(k)} \)

\( \begin{array}{l} GLSHshade=\\ {}\kern1.5em {\displaystyle \sum_{k=0}^{2N}\frac{{\left(k-{\mu}_x-{\mu}_y\right)}^3 GLSH(k)}{{\left({\sigma}_x^2-{\sigma}_y^2+2\rho {\sigma}_x{\sigma}_y\right)}^{\raisebox{1ex}{$3$}\!\left/ \!\raisebox{-1ex}{$2$}\right.}}}\end{array} \)

\( \begin{array}{l} GLSHshade=\\ {}\kern1.5em {\displaystyle \sum_{k=0}^{2N}\frac{{\left(k-{\mu}_x-{\mu}_y\right)}^3 GLSH(k)}{{\left({\sigma}_x^2-{\sigma}_y^2+2\rho {\sigma}_x{\sigma}_y\right)}^{\raisebox{1ex}{$3$}\!\left/ \!\raisebox{-1ex}{$2$}\right.}}}\end{array} \)

\( \begin{array}{l} GLSHprom=\\ {}\kern1.25em {\displaystyle \sum_{k=0}^{2N}\frac{{\left(k-{\mu}_x-{\mu}_y\right)}^4 GLSH(k)}{{\left({\sigma}_x^2+{\sigma}_y^2+2\rho {\sigma}_x{\sigma}_y\right)}^{\raisebox{1ex}{$4$}\!\left/ \!\raisebox{-1ex}{$2$}\right.}}}\end{array} \)

\( \begin{array}{l} GLSHprom=\\ {}\kern1.25em {\displaystyle \sum_{k=0}^{2N}\frac{{\left(k-{\mu}_x-{\mu}_y\right)}^4 GLSH(k)}{{\left({\sigma}_x^2-{\sigma}_y^2+2\rho {\sigma}_x{\sigma}_y\right)}^{\raisebox{1ex}{$4$}\!\left/ \!\raisebox{-1ex}{$2$}\right.}}}\end{array} \)

Adjusted formula

\( {\mu}_x={\displaystyle \sum_{i=0}^Ni\times {p}_x(i)} \)

\( {\mu}_x={\displaystyle \sum_{i=0}^N{p}_x(i)} \)

\( {\mu}_y={\displaystyle \sum_{j=0}^Nj\times {p}_y(j)} \)

\( {\mu}_y={\displaystyle \sum_{j=0}^N{p}_y(j)} \)

\( {\sigma}_x^2={\displaystyle \sum_{i=0}^N{\left(i-{\mu}_x\right)}^2{p}_x(i)} \)

\( {\sigma}_x^2={\displaystyle \sum_{i=0}^N{i}^2\times {p}_x(i)-{\mu}_x{}^2} \)

\( {\sigma}_y^2={\displaystyle \sum_{j=0}^N{\left(j-{\mu}_y\right)}^2{p}_y(j)} \)

\( {\sigma}_y^2={\displaystyle \sum_{j=0}^N{j}^2\times {p}_y(j)-{\mu}_y{}^2} \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsai, MJ., Yin, JS., Yuadi, I. et al. Digital forensics of printed source identification for Chinese characters. Multimed Tools Appl 73, 2129–2155 (2014). https://doi.org/10.1007/s11042-013-1642-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-013-1642-2

Keywords

Navigation