Metal Science and Heat Treatment

, Volume 58, Issue 9–10, pp 520–526 | Cite as

Modern Sparingly Alloyed Titanium Alloys: Application and Prospects

  • N. A. Nochovnaya
  • P. V. Panin
  • E. B. Alekseev
  • K. A. Bokov

Comparative analysis of the properties of domestic and foreign sparingly alloyed titanium alloys is preformed, and the main tendencies and prospects of their development are considered. Recent works of FGUP “VIAM” in the field of creation and approbation of various-purpose low-alloy titanium alloys are reviewed.

Key words

sparingly alloyed titanium alloys multilayer metal-polymer composite materials strength ductility density 


The work has been performed with support of the Foundation for Aiding the Deployment of Small Enterprises in the Sphere of Science and Engineering.


  1. 1.
    E. N. Kablov, “Innovative works at FGUP “VIAM” RF State Research Center on implementation of the “Strategic Directions of Advancement of Materials and Methods of their Processing until 2030,” Aviats. Mater. Tekhnol., No. 1(34), 3 – 33 (2015).Google Scholar
  2. 2.
    V. V. Antipov, O. G. Senatorova, N. F. Lukina, et al., “Multilayer metal-polymer composite materials,” Aviats. Mater. Tekhnol., No. S, 226 – 230 (2012).Google Scholar
  3. 3.
    E. N. Kablov, V. V. Antipov, and O. G. Senatorova, “Aluminum-glass-reinforced laminates SIAL-1441 and cooperation with Airbus and TUDELFT,” Tsvetn. Met., No. 9(849), 50 – 53 (2013).Google Scholar
  4. 4.
    N. A. Nochovnaya, P. V. Panin, E. B. Alekseev, and K. A. Bokov, “Sparingly alloyed titanium alloys for multilayer metal-polymer composite materials,” Trudy VIAM, No. 11, Art. 0.2 (2014) ( Scholar
  5. 5.
    P. Panin, N. Nochovnaya, D. Kablov, and E. Alexeev, “Lowcost titanium alloys for titanium-polymer layered composites,” in: Proc. 29th Congr. Int. Council of the Aeronautical Sciences (ICAS 2014), St. Petersburg, Sept. 7 – 12, 2014 [CD].Google Scholar
  6. 6.
    A. A. Il’in, B. A. Kolachev, and I. S. Pol’kin, Titanium Alloys. Composition, Structure, Properties [in Russian], VILS – MATI, Moscow (2009), 520 p.Google Scholar
  7. 7.
    A. I. Khorev, S. P. Belov, and S. G. Glazunov, The Physical Metallurgy of Titanium and its Alloys [in Russian], Metallurgiya, Moscow (1992), 352 p.Google Scholar
  8. 8.
    M. Niinomi, “Recent trends in titanium research and development in Japan,” in: Proc. 12th World Conf. on Titanium (2011), Vol. 1, pp. 30 – 37.Google Scholar
  9. 9.
    S. V. Skvortsova, A. A. Filatov, D. A. Dzunovich, and P. V. Panin, “Effect of aluminum content on deformability of titanium alloys at normal temperature,” Tekhnol. Legk. Splavov, No. 3, 40 – 45 (2008).Google Scholar
  10. 10.
    E. N. Kablov, O. G. Ospennikova, and A. V. Vershkov, “Rare metals and rare earth elements—materials for recent and future advanced technologies,” Trudy VIAM, No. 2, Art. 01 (2013) ( Scholar
  11. 11.
    I. I. Sokolov and A. E. Raskutin, “New-generation carbon-filled and fiberglass plastics,” Trudy VIAM, No. 4, Art. 09 (2013) ( Scholar
  12. 12.
    V. G. Antashev, N. A. Nochovnaya, V. E. Bolshakov, and E. N. Kablov, Titanium-Base Alloy and Article Fabricated from It, RF Patent No. 2222627 [in Russian], Publ. 27.01.2004.Google Scholar
  13. 13.
    D. E. Kablov, P. V. Panin, A. A. Shiryaev, and N. A. Nochovnaya, “Experience of application of ALD VAR L200 vacuumarc furnace for melting ingots of refractory alloys based on titanium aluminides,” Aviats. Mater. Tekhnol., No. 2(31), 27 – 33 (2014).Google Scholar
  14. 14.
    H. Conrad, “Effect of interstitial solutes on the strength and ductility of titanium,” Progr. Mater. Sci., 26(2 – 4), 123 – 403 (1981).Google Scholar
  15. 15.
    J. Zhu, A. Kamiya, T. Yamada, W. Shi, and K. Naganuma, “Influence of boron addition on microstructure and mechanical properties of dental cast titanium alloys,” Mater. Sci. Eng. A, 339(1 – 2), 53 – 62 (2003).Google Scholar
  16. 16.
    T. Ando, K. Nakashima, T. Tsuchiyama, and S. Takaki, “Precipitation of fine beta-phase in high nitrogen titanium alloy,” in: Proc. 11th World Conf. on Titanium (2007), Vol. 1, pp. 447 – 450.Google Scholar
  17. 17.
    M. Koike, C. Ahkubo, H. Sato, H. Fujii, and T. Okabe, “Evaluation of cast Ti – Fe – O – N alloys for dental applications,” Mater. Sci. Eng. C, 25(3), 349 – 356 (2005).CrossRefGoogle Scholar
  18. 18.
    T. Furuta, et al., High-Strength Titanium Alloy and Method for Production Thereof, EP Patent 1375690, publ. 02.01.2004.Google Scholar
  19. 19.
    D. J. Bryan, High Strength Alpha/Beta Titanium Alloy Fasteners and Fastener Stock, US Appl. 2012/0076612, publ. 29.05.2012.Google Scholar
  20. 20.
    Y. Kosaka, Titanium-Aluminum-Vanadium Alloys and Products Made Therefrom, US Patent 5980655, Titanium Metals Corp., publ. 09.11.1999.Google Scholar
  21. 21.
    WO Appl. 2012/012102, Processing of Titanium-Aluminum-Vanadium Alloys and Products Made Thereby, ATI Properties Inc. Publ., publ. 26.01.2012.Google Scholar
  22. 22.
    S. V. Skvortsova, A. A. Il’in, S. Ya. Betsofen, et al., “Anisotropy of mechanical properties and texture of sheet semiproducts from titanium alloys,” Tekhnol. Legk. Splavov, No. 1 – 2, 81 – 87 (2006).Google Scholar
  23. 23.
    S. V. Skvortsova, D. A. Dzunovich, P. V. Panin, and L. A. Snegireva, “Formation of texture in sheet semiproducts of titanium alloy VT16 under plastic deformation and heat treatment,” Aviats. Prom.-st’, No. 4, 25 – 29 (2007).Google Scholar
  24. 24.
    A. A. Il’in, S. V. Skvortsova, D. A. Dzunovich, et al., “Effect of parameters of heat and thermomechanical treatment on formation of texture in sheet semiproducts from titanium alloys,” Tekhnol. Mashinostr., No. 8, 8 – 12 (2012).Google Scholar
  25. 25.
    K. Takahashi, et al., Titanium Alloy Part and Method of Manufacturing Same, EP Patent 2508643, Nippon Steel Corp., publ. 10.10.2012.Google Scholar
  26. 26.
    US Appl. 2012/0107132, Titanium Alloy with Improved Properties, Titanium Metals. Corp., publ. 03.05.2012.Google Scholar
  27. 27.
    C. Siemers, P. Jencus, M. Baker, J. Roster, and F. Feyerabend, “A new free matching titanium alloy containing lanthanum,” in: Proc. 11thWorld Conf. on Titanium (2007), Vol. 1, pp. 709 – 712.Google Scholar
  28. 28.
    JP Patent 2006052418, Method for Manufacturing \( \alpha \) + β Type Titanium Alloy, Nippon Sangyo, Honda Motor Co., publ. 23.02.2006.Google Scholar
  29. 29.
    T. Hashiki, “Development of a high temperature oxidation-resistant titanium alloy for exhaust systems of motorcycles and automobiles,” in: Proc. 11th World Conf. on Titanium (2007), Vol. II, pp. 1387 – 1390.Google Scholar
  30. 30.
    H. Otsuka, K. Takahashi, Y. Itami, H. Fujii, and K. Tokuno, “Formability of newly developed high-performance titanium alloys for automotive exhaust systems,” in: Proc. 11th World Conf. on Titanium (2007), Vol. I, pp. 251 – 254.Google Scholar
  31. 31.
    K. Mori and H. Fujii, “Effect of Mo and FeTi formation in Ti – Al – Fe based titanium alloys,” in: Proc. 11th World Conf. on Titanium (2007), Vol. I, pp. 729 – 732.Google Scholar
  32. 32.
    M. Abdelkawy, K. Ibrahim, A. Hussein, M. Mhead, and L. Wagner, “Effect of Si-addition as a grain refiner on microstructure and properties of Ti – 6Al – 4V alloys,” in: Proc. 12th World Conf. on Titanium (2012), Vol. II, pp. 845 – 849.Google Scholar
  33. 33.
    A. Suzuki and T. Noda, High Strength Ti Alloy and Its Production Method, JP Patent 2004010963, publ. 15.02.2004.Google Scholar
  34. 34.
    Titanium Alloy Incorporated with Boron Added, JP Patent 2004277873, Nippon Sangyo, publ. 07.10.2004.Google Scholar
  35. 35.
    P. Garcia Esteban et al., Low-Cost Titanium Alloys and Methods for Preparation Thereof, WO Appl. 2010/015723, publ. 11.02.2010.Google Scholar
  36. 36.
    V. V. Tetyukhin, V. I. Zakharov, and I. V. Levin, Titanium-Base Alloy and Method of Heat Treatment of Large-Size Semiproducts from This Alloy, RF Patent 216904 [in Russian], publ. 20.06.2001.Google Scholar
  37. 37.
    V. V. Tetyukhin, V. I. Zakharov, and I. V. Levin, Titanium-Based Alloy, RF Patent 2169782 [in Russian], publ. 06.05.2006.Google Scholar
  38. 38.
    I. V. Levin, Titanium-Based Alloy, Patent EP 1882752 [in Russian], publ. 03.06.2099.Google Scholar
  39. 39.
    V. V. Tetjukhin, et al., Titanium-Based Alloy, US Patent 6632396, publ. 14.10.2003.Google Scholar
  40. 40.
    Alpha-Beta Ti – Al – V – Mo – Fe Alloy, US Patent 6786985, Titanium Metals Corp., publ. 07.09.2004.Google Scholar
  41. 41.
    Y. Kosaka and K. Takahashi, “Recent development of titanium and its alloys in automotive and motorcycle applications,” in: Proc. 11th World Conf. on Titanium (2007), Vol. II, pp. 1383 – 1386.Google Scholar
  42. 42.
    Titanium Alloy Having Excellent High-Temperature Oxidation and Corrosion Resistance, US Patent 7166367, Kobe Steel Ltd., publ. 23.01.2007.Google Scholar
  43. 43.
    Alpha Plus Beta Type Titanium Alloy, US Appl. 2009/0169416, Morris Manning Martin LLP, publ. 02.07.2009.Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • N. A. Nochovnaya
    • 1
  • P. V. Panin
    • 1
  • E. B. Alekseev
    • 1
  • K. A. Bokov
    • 1
  1. 1.Federal State Unitary Enterprise “VIAM” (FGUP “VIAM”)MoscowRussia

Personalised recommendations