Advertisement

Earth, Moon, and Planets

, Volume 105, Issue 2–4, pp 235–247 | Cite as

E–ELT: Expected Applications to Asteroid Observations in the Thermal Infrared

  • Marco Delbó
Original Paper
  • 62 Downloads

Abstract

Applications of the 42m European Extremely Large Telescope (E–ELT) for the physical characterization of asteroids is presented. In particular, this work focuses on the determination of sizes and other physical properties of asteroids from measurements of their heat emission in the thermal infrared (>5 μm). Here we show that E–ELT will be best suited for the physical characterization of some selected asteroids of particular interest, as for instance: (i) targets of sample return missions to near-Earth Asteroids (NEAs); (ii) km and sub-km binary asteroids for which size information will allow their bulk density to be derived; (iii) sizes and values of the thermal inertia of potentially hazardous asteroids (PHAs). These two parameters both affect the Yarkovsky effect, which plays a role in the orbital evolution of km sized asteroids and represents a large source of uncertainty in the Earth impact probability prediction of some PHAs. Thermal inertia is also a sensitive indicator for the presence or absence of thermal insulating regolith on the surface of atmosphere-less bodies. Knowledge of this parameter is thus important for the design and the development of lander- and sample return-missions to asteroids. The E–ELT will also be able to spatially resolve asteroids and detect binaries in a range of sizes that are at present not accessible to present day adaptive optics.

Keywords

Asteroids Thermal infrared Observations 

Notes

Acknowledgements

This work was partially carried out while Marco Delbó was a Henri Poincaré Fellow at the Observatoire de la Côte d’Azur. The Henri Poincaré Fellowship is funded by the CNRS-INSU, the Conseil Général des Alpes-Maritimes and the Rotxary International – District 1730. The author wishes to thank the organizers of the workshop “Future Ground based Solar System Research: Synergies with Space Probes and Space Telescope” hold in the beautiful Elba island, Italy, in September 2008. In particular, the kind invitation from Gian Paolo Tozzi and Ulli Kaufl in acknowledge. Part of this paper was written in the library of the British Museum (London, UK). The comments and the suggestions of an anonymous referee are gratefully acknowledged.

References

  1. W.F. Bottke, D.D. Durda, D. Nesvorný, R. Jedicke, A. Morbidelli, D. Vokrouhlický, H. Levison, The fossilized size distribution of the main asteroid belt. Icarus 175, 111 (2005) CrossRefADSGoogle Scholar
  2. W.F. Bottke, D.D. Durda, D. Nesvorný, R. Jedicke, A. Morbidelli, D. Vokrouhlický, H.F. Levison, Linking the collisional history of the main asteroid belt to its dynamical excitation and depletion. Icarus 179, 63 (2005)CrossRefADSGoogle Scholar
  3. W.F. Bottke, D. Vokrouhlický, D.P. Rubincam, D. Nesvorný, The yarkovsky and yorp effects: Implications for asteroid dynamics. Annu. Rev. Earth. Planet. Sci. 34, 157 (2006)CrossRefADSGoogle Scholar
  4. B.R. Brandl, R. Lenzen, E. Pantin, A. Glasse, J. Blommaert, L. Venema, F. Molster, R. Siebenmorgen, H. Boehnhardt, E. van Dishoeck, P. van der Werf, T. Henning, W. Brandner, P-O. Lagage, T.J.T. Moore, M. Baes, C. Waelkens, C. Wright, H.U. Käufl, S. Kendrew, R. Stuik, L. Jolissaint, in METIS: The Mid-Infrared E-ELT Imager and Spectrograph. Ground-Based and Airborne Instrumentation for Astronomy II, vol. 7014, ed. by McLean (2008), p. 55Google Scholar
  5. R.H. Brown, Ellipsoidal geometry in asteroid thermal models—the standard radiometric model. Icarus 64, 53 (1985). ISSN 0019-1035Google Scholar
  6. R.H. Brown, D.L. Matson, Thermal effects of insolation propagation into the regoliths of airless bodies. Icarus 72, 84 (1987). ISSN 0019-1035Google Scholar
  7. A. Cellino, E. Diolaiti, R. Ragazzoni, D. Hestroffer, P. Tanga, A. Ghedina, Speckle interferometry observations of asteroids at tng*. Icarus 162, 278 (2003)CrossRefADSGoogle Scholar
  8. M. Delbó, The nature of near-Earth asteroids from the study of their thermal infrared emission. Ph.D. thesis (2004)Google Scholar
  9. M. Delbó, A. Cellino, E.F. Tedesco, Albedo and size determination of potentially hazardous asteroids: (99942) apophis. Icarus 188, 266 (2007)CrossRefADSGoogle Scholar
  10. M. Delbó, A. Dell’Oro, A.W. Harris, S. Mottola, M. Mueller, Thermal inertia of near-Earth asteroids and implications for the magnitude of the Yarkovsky effect. Icarus 190, 236 (2007)CrossRefADSGoogle Scholar
  11. M. Delbó, A.W. Harris, R.P. Binzel, P. Pravec, J.K. Davies, Keck observations of near-Earth asteroids in the thermal infrared. Icarus 166, 116 (2003)CrossRefADSGoogle Scholar
  12. M. Delbó, A.W. Harris, Physical properties of near-earth asteroids from thermal infrared observations and thermal modeling. Meteorit. Planet. Sci. 37, 1929 (2002)ADSGoogle Scholar
  13. M. Delbó, P. Tanga, Thermal inertia of main belt asteroids smaller than 100 km from iras data. Planet. Space Sci. 57(2), 259–265 (2009)CrossRefADSGoogle Scholar
  14. M. Delbó, K. Walsh, M. Mueller, The cool surfaces of binaries near-Earth asteroids. American Astronomical Society, DPS meeting #40, #25.08. Bull. Am. Astron. Soc. 40, 433 (2008)Google Scholar
  15. J.P. Emery, A.L. Sprague, F.C. Witteborn, J.E. Colwell, R.W.H. Kozlowski, D.H. Wooden, Mercury: thermal modeling and mid-infrared (5–12 m) observations. Icarus 136, 104 (1998)CrossRefADSGoogle Scholar
  16. J.D. Giorgini, S.J. Ostro, L.A.M. Benner, P.W. Chodas, S.R. Chesley, R.S. Hudson, M.C. Nolan, A.R. Klemola, E.M. Standish, R.F. Jurgens, R. Rose, A.B. Chamberlin, D.K. Yeomans, J.L. Margot, Asteroid 1950 da’s encounter with earth in 2880: physical limits of collision probability prediction. Science 296, 132 (2002)CrossRefADSGoogle Scholar
  17. R. Gomes, H.F. Levison, K. Tsiganis, A. Morbidelli, Origin of the cataclysmic late heavy bombardment period of the terrestrial planets. Nature 435, 466 (2005)CrossRefADSGoogle Scholar
  18. A.W. Harris, A thermal model for near-earth asteroids. Icarus 131, 291 (1998)CrossRefADSGoogle Scholar
  19. A.W. Harris, The surface properties of small asteroids from thermal-infrared observations. Asteroids 229, 449 (2006)Google Scholar
  20. A.W. Harris, J.S.V. Lagerros, in Asteroids in the Thermal Infrared, ed. by W.F. Bottke Jr., A. Cellino, P. Paolicchi, R.P. Binzel. Asteroids III (University of Arizona Press, Tucson, 2002), pp. 205–218Google Scholar
  21. S. J. Keihm, Interpretation of the lunar microwave brightness temperature spectrum—feasibility of orbital heat flow mapping. Icarus 60, 568 (1984). ISSN 0019-1035Google Scholar
  22. J.S.V. Lagerros, Thermal physics of asteroids. i. effects of shape, heat conduction and beaming. A&A 310, 1011 (1996)Google Scholar
  23. J.S.V. Lagerros, Thermal physics of asteroids. iii. irregular shapes and albedo variegations. A&A 325, 1226 (1997)ADSGoogle Scholar
  24. J.S.V. Lagerros, Thermal physics of asteroids. iv. thermal infrared beaming. A&A 332, 1123 (1998)ADSGoogle Scholar
  25. P.L. Lamy, L. Jorda, S. Fornasier, O. Groussin, M.A. Barucci, J. Carvano, E. Dotto, M. Fulchignoni, I. Toth, Asteroid 2867 steins. iii. spitzer space telescope observations, size determination, and thermal properties. A&A 487, 1187 (2008)CrossRefADSGoogle Scholar
  26. L.A. Lebofsky, M.V. Sykes , E.F. Tedesco, G.J. Veeder, D.L. Matson, R.H. Brown, J.C. Gradie, M.A. Feierberg, R.J. Rudy, A refined ’standard’ thermal model for asteroids based on observations of 1 ceres and 2 pallas. Icarus 68, 239 (1986). ISSN 0019-1035Google Scholar
  27. A.K. Mainzer, P. Eisenhardt, E.L. Wright, F.C. Liu, W. Irace, I. Heinrichsen, R. Cutri, V. Duval, in Preliminary Design of the Wide-Field Infrared Survey Explorer (WISE). UV/Optical/IR Space Telescopes: Innovative Technologies and Concepts II, vol. 5899, ed. by H.A. MacEwen. Proceedings of the SPIE, (2005), pp. 262–273Google Scholar
  28. M.T. Mellon, B.M. Jakosky, H.H. Kieffer, P.R. Christensen, High-resolution thermal inertia mapping from the mars global surveyor thermal emission spectrometer. Icarus 148, 437 (2000)CrossRefADSGoogle Scholar
  29. W.J. Merline, S.J. Weidenschilling, D.D. Durda, J.L. Margot, P. Pravec, A.D. Storrs, in Asteroids do have Satellites, ed. by W.F. Bottke Jr., A. Cellino, P. Paolicchi, R.P. Binzel. Asteroids III (University of Arizona Press, Tucson, 2002), pp. 289–312Google Scholar
  30. A. Morbidelli, J. Chambers, J.I. Lunine, J.M. Petit, F. Robert, G.B. Valsecchi, K.E. Cyr, Source regions and time scales for the delivery of water to earth. Meteorit. Planet. Sci. 35, 1309 (2000)ADSCrossRefGoogle Scholar
  31. A. Morbidelli, H.F. Levison, K. Tsiganis, R. Gomes, Chaotic capture of jupiter’s trojan asteroids in the early solar system. Nature 435, 462 (2005)CrossRefADSGoogle Scholar
  32. A. Morbidelli, D. Vokrouhlický, The yarkovsky-driven origin of near-earth asteroids. Icarus 163, 120 (2003)CrossRefADSGoogle Scholar
  33. M. Mueller, Surface properties of asteroids from mid-infrared observations and thermophysical modeling. Ph.D. Thesis (2007)Google Scholar
  34. M. Mueller, A.W. Harris, S.J. Bus, J.L. Hora, M. Kassis, J.D. Adams, The size and albedo of rosetta fly-by target 21 lutetia from new irtf measurements and thermal modeling. A&A 447, 1153 (2006)CrossRefADSGoogle Scholar
  35. T.G. Müller, Herschel Open Time Key Programme; TNOs are cool: a survey of the transneptunian region. Earth Moon Planets, this issue (2009)Google Scholar
  36. T.G. Müller, J.S.V. Lagerros, Asteroids as calibration standards in the thermal infrared for space observatories. A&A 381, 324 (2002)CrossRefADSGoogle Scholar
  37. T.G. Müller, T. Sekiguchi, M. Kaasalainen, M. Abe, S. Hasegawa, Thermal infrared observations of the hayabusa spacecraft target asteroid 25143 itokawa. A&A 443, 347 (2005)CrossRefADSGoogle Scholar
  38. T.G. Müller, M.F. Sterzik, O. Schütz, P. Pravec, R. Siebenmorgen, Thermal infrared observations of near-earth asteroid 2002 ny40. A&A 424, 1075 (2004)CrossRefADSGoogle Scholar
  39. H. Murakami and 92 colleagues, The Infrared Astronomical Mission AKARI. Publ. Astron. Soc. Jpn. 59, 369 (2007)Google Scholar
  40. A. Parker, Ž. Ivezić, M. Jurić, R. Lupton, M.D. Sekora, A. Kowalski, The size distributions of asteroid families in the sdss moving object catalog 4. Icarus 198, 138 (2008)CrossRefADSGoogle Scholar
  41. P. Pravec, A.W. Harris, Binary asteroid population. 1. angular momentum content. Icarus 190, 250 (2007)CrossRefADSGoogle Scholar
  42. R. Ragazzoni, A. Baruffolo, E. Marchetti, A. Ghedina, J. Farinato, T. Niero, Speckle interferometry measurements of the asteroids 10-hygiea and 15-eunomia. A&A 354, 315 (2000)ADSGoogle Scholar
  43. V.G. Shevchenko, E.F. Tedesco, Asteroid albedos deduced from stellar occultations. Icarus 184, 211 (2006)CrossRefADSGoogle Scholar
  44. J.R. Spencer, A rough-surface thermophysical model for airless planets. Icarus 83, 27 (1990). ISSN 0019-1035Google Scholar
  45. J.R. Spencer, L.A. Lebofsky, M.V. Sykes, Systematic biases in radiometric diameter determinations. Icarus 78, 337 (1989). ISSN 0019-1035Google Scholar
  46. P. Tanga, M. Delbó, Asteroid occultations today and tomorrow: toward the gaia era. A&A 474, 1015 (2007)CrossRefADSGoogle Scholar
  47. E.F. Tedesco, A. Cellino, V. Zappalá, The statistical asteroid model. i. the main-belt population for diameters greater than 1 km. Astron. J. 129, 2869 (2005)CrossRefADSGoogle Scholar
  48. E.F. Tedesco, M.P. Egan, S.D. Price, The midcourse space experiment infrared minor planet survey. Astron. J. 124, 583 (2002)CrossRefADSGoogle Scholar
  49. E.F. Tedesco, P.V. Noah, M. Noah, S.D. Price, The supplemental iras minor planet survey. Astron. J. 123, 1056 (2002)CrossRefADSGoogle Scholar
  50. D.E. Trilling, B. Bhattacharya, M. Blaylock, J.A. Stansberry, M.V. Sykes, L.H. Wasserman, The spitzer asteroid catalog: albedos and diameters of 35,000 asteroids. American Astronomical Society, DPS meeting #39, #35.15. Bull. Am. Astron. Soc. 39 484 (2007)Google Scholar
  51. K. Tsiganis, R. Gomes, A. Morbidelli, H.F. Levison, Origin of the orbital architecture of the giant planets of the solar system. Nature 435, 459 (2005)CrossRefADSGoogle Scholar
  52. K.J. Walsh, The future of binary asteroid detection. Earth Moon Planets, this issue (2009)Google Scholar
  53. K.J. Walsh, D.C. Richardson, P. Michel, Rotational breakup as the origin of small binary asteroids. Nature 454, 188–191 (2008)CrossRefADSGoogle Scholar
  54. B.D. Warner, A.W. Harris, P. Pravec, The asteroid lightcurve database. Icarus 202, 134–146 (2009)CrossRefADSGoogle Scholar
  55. S.D. Wolters, S.F. Green, N. McBride, J.K. Davies, Optical and thermal infrared observations of six near-Earth asteroids in 2002. Icarus 175, 92–110Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.UNS, CNRSNice cedex 04France

Personalised recommendations