Molecular identification and transcriptional regulation of porcine IFIT2 gene

Original Article
  • 12 Downloads

Abstract

IFN-induced protein with tetratricopeptide repeats 2 (IFIT2) plays important roles in host defense against viral infection as revealed by studies in humans and mice. However, little is known on porcine IFIT2 (pIFIT2). Here, we performed molecular cloning, expression profile, and transcriptional regulation analysis of pIFIT2. pIFIT2 gene, located on chromosome 14, is composed of two exons and have a complete coding sequence of 1407 bp. The encoded polypeptide, 468 aa in length, has three tetratricopeptide repeat motifs. pIFIT2 gene was unevenly distributed in all eleven tissues studied with the most abundance in spleen. Poly(I:C) treatment notably strongly upregulated the mRNA level and promoter activity of pIFIT2 gene. Upstream sequence of 1759 bp from the start codon which was assigned +1 here has promoter activity, and deltaEF1 acts as transcription repressor through binding to sequences at position − 1774 to − 1764. Minimal promoter region exists within nucleotide position − 162 and − 126. Two adjacent interferon-stimulated response elements (ISREs) and two nuclear factor (NF)-κB binding sites were identified within position − 310 and − 126. The ISRE elements act alone and in synergy with the one closer to start codon having more strength, so do the NF-κB binding sites. Synergistic effect was also found between the ISRE and NF-κB binding sites. Additionally, a third ISRE element was identified within position − 1661 to − 1579. These findings will contribute to clarifying the antiviral effect and underlying mechanisms of pIFIT2.

Keywords

Pig IFIT2 Cloning Expression Poly(I:C) Promoter 

Notes

Acknowledgements

This work was supported by the Scientific Research Foundation of Heilongjiang Provincial Education Department (12541014) and Foundation for Improving Innovative Capability of Scientific Institutions, Heilongjiang (YC2016D001).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Sadler AJ, Williams BR (2008) Interferon-inducible antiviral effectors. Nat Rev Immunol 8(7):559–568CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Schoggins JW, Rice CM (2011) Interferon-stimulated genes and their antiviral effector functions. Curr Opin Virol 1(6):519–525CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Zhou X, Michal JJ, Zhang L, Ding B, Lunney JK, Liu B, Jiang Z (2013) Interferon induced IFIT family genes in host antiviral defense. Int J Biol Sci 9(2):200–208CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    D’Andrea LD, Regan L (2003) TPR proteins: the versatile helix. Trends Biochem Sci 28(12):655–662CrossRefPubMedGoogle Scholar
  5. 5.
    Fensterl V, Wetzel JL, Ramachandran S, Ogino T, Stohlman SA, Bergmann CC, Diamond MS, Virgin HW, Sen GC (2012) Interferon-induced Ifit2/ISG54 protects mice from lethal VSV neuropathogenesis. PLoS Pathog 8(5):e1002712CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Fensterl V, Wetzel JL1, Sen GC (2014) Interferon-induced protein Ifit2 protects mice from infection of the peripheral nervous system by vesicular stomatitis virus. J Virol 88(18):10303–10311CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Davis BM, Fensterl V, Lawrence TM, Hudacek AW, Sen GC, Schnell MJ (2017) Ifit2 is a restriction factor in rabies virus pathogenicity. J Virol 91(17):e00889-17CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Butchi NB, Hinton DR, Stohlman SA, Kapil P, Fensterl V, Sen GC, Bergmann CC (2014) Ifit2 deficiency results in uncontrolled neurotropic coronavirus replication and enhanced encephalitis via impaired alpha/beta interferon induction in macrophages. J Virol 88(2):1051–1064CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Wetzel JL, Fensterl V, Sen GC (2014) Sendai virus pathogenesis in mice is prevented by Ifit2 and exacerbated by interferon. J Virol 88(23):13593–13601CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Pei R, Qin B, Zhang X, Zhu W, Kemper T, Ma Z, Trippler M, Schlaak J, Chen X, Lu M (2014) Interferon-induced proteins with tetratricopeptide repeats 1 and 2 are cellular factors that limit hepatitis B virus replication. J Innate Immun 6(2):182–191CrossRefPubMedGoogle Scholar
  11. 11.
    Cho H, Shrestha B, Sen GC, Diamond MS (2013) A role for Ifit2 in restricting West Nile virus infection in the brain. J Virol 87(15):8363–8371CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Weber F, Wagner V, Rasmussen SB, Hartmann R, Paludan SR (2006) Double-stranded RNA is produced by positive-strand RNA viruses and DNA viruses but not in detectable amounts by negative-strand RNA viruses. J Virol 80(10):5059–5064CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Wang L, Wang JK, Han LX, Zhuo JS, Du X, Liu D, Yang XQ (2017) Characterization of miRNAs involved in response to poly(I:C) in porcine airway epithelial cells. Anim Genet 48(2):182–190CrossRefPubMedGoogle Scholar
  14. 14.
    Ministry of Science and Technology of China (2006) Guidelines on humane treatment of laboratory animals ([2006] 398). http://www.most.gov.cn/fggw/zfwj/zfwj2006/200609/t20060930_54389.htm. Accessed 30 Sept 2006
  15. 15.
    Li HT, Liu D, Yang XQ (2011) Identification and functional analysis of a novel single nucleotide polymorphism (SNP) in the porcine Toll-like receptor (TLR) 5 gene. Acta Agric Scand Sect A 61(4):161–167Google Scholar
  16. 16.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the \({2^{ - \Delta \Delta {{\text{C}}_{\text{t}}}}}\) method. Methods 25:402–408CrossRefPubMedGoogle Scholar
  17. 17.
    Terenzi F, Hui DJ, Merrick WC, Sen GC (2006) Distinct induction patterns and functions of two closely related interferon-inducible human genes, ISG54 and ISG56. J Biol Chem 281(45):34064–34071CrossRefPubMedGoogle Scholar
  18. 18.
    Terenzi F, White C, Pal S, Williams BR, Sen GC (2007) Tissue-specific and inducer-specific differential induction of ISG56 and ISG54 in mice. J Virol 81:8656–8665CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Wacher C, Müller M, Hofer MJ, Getts DR, Zabaras R, Ousman SS, Terenzi F, Sen GC, King NJ, Campbell IL (2007) Coordinated regulation and widespread cellular expression of interferon-stimulated genes (ISG) ISG-49, ISG-54, and ISG-56 in the central nervous system after infection with distinct viruses. J Virol 81:860–871CrossRefPubMedGoogle Scholar
  20. 20.
    Fensterl V, White CL, Yamashita M, Sen GC (2008) Novel characteristics of the function and induction of murine p56 family proteins. J Virol 82:11045–11053CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Flanagan JR, Becker KG, Ennist DL, Gleason SL, Driggers PH, Levi BZ, Appella E, Ozato K (1992) Cloning of a negative transcription factor that binds to the upstream conserved region of Moloney murine leukemia virus. Mol Cell Biol 12:38–44CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Park K, Atchison ML (1991) Isolation of a candidate repressor/activator, NF-E1 (YY-1, delta), that binds to the immunoglobulin kappa 3′ enhancer and the immunoglobulin heavy-chain mu E1 site. Proc Natl Acad Sci USA 88:9804–9808CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Horiguchi K, Sakamoto K, Koinuma D, Semba K, Inoue A, Inoue S, Fujii H, Yamaguchi A, Miyazawa K, Miyazono K, Saitoh M (2012) TGF-β drives epithelial-mesenchymal transition through δEF1-mediated downregulation of ESRP. Oncogene 31(26):3190–3201CrossRefPubMedGoogle Scholar
  24. 24.
    Eger A, Aigner K, Sonderegger S, Dampier B, Oehler S, Schreiber M, Berx G, Cano A, Beug H, Foisner R (2005) DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene 24(14):2375–2385CrossRefPubMedGoogle Scholar
  25. 25.
    Aigner K, Descovich L, Mikula M, Sultan A, Dampier B, Bonné S, van Roy F, Mikulits W, Schreiber M, Brabletz T, Sommergruber W, Schweifer N, Wernitznig A, Beug H, Foisner R, Eger A (2007) The transcription factor ZEB1 (deltaEF1) represses Plakophilin 3 during human cancer progression. FEBS Lett 581(8):1617–1624CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Miller MM, Jarosinski KW, Schat KA (2008) Negative modulation of the chicken infectious anemia virus promoter by COUP-TF1 and an E box-like element at the transcription start site binding deltaEF1. J Gen Virol 89(Pt 12):2998–3003CrossRefPubMedGoogle Scholar
  27. 27.
    Jen Y, Weintraub H, Benezra R (1992) Overexpression of Id protein inhibits the muscle differentiation program: in vivo association of Id with E2A proteins. Genes Dev 6:1466–1479CrossRefPubMedGoogle Scholar
  28. 28.
    Norton JD, Deed RW, Craggs G, Sablitzky F (1998) Id helix-loop-helix proteins in cell growth and differentiation. Trends Cell Biol 8:58–65PubMedGoogle Scholar
  29. 29.
    Zhang J, Shao SY, Li LZ, Liu D, Yang XQ (2015) Molecular cloning and characterization of porcine interferon-induced protein with tetratricopeptide repeats (IFIT) 5. Can J Anim Sci 95(4):551–556CrossRefGoogle Scholar
  30. 30.
    Pfeffer LM, Kim JG, Pfeffer SR, Carrigan DJ, Baker DP, Wei L, Homayouni R (2004) Role of nuclear factor-kappaB in the antiviral action of interferon and interferon-regulated gene expression. J Biol Chem 279(30):31304–31311CrossRefPubMedGoogle Scholar
  31. 31.
    Wei L, Sandbulte MR, Thomas PG, Webby RJ, Homayouni R, Pfeffer LM (2006) NFkappaB negatively regulates interferon-induced gene expression and anti-influenza activity. J Biol Chem 281(17):11678–11684CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Animal Science and TechnologyNortheast Agricultural UniversityHarbinChina
  2. 2.Agricultural Academy of Heilongjiang ProvinceHarbinChina

Personalised recommendations