Skip to main content
Log in

Development of a high-resolution melting approach for reliable and cost-effective genotyping of PPVres locus in apricot (P. armeniaca)

  • Short Communication
  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Sharka, caused by plum pox virus, is the most important viral disease of stone fruits. Important progresses have been recently achieved in apricot (Prunus armeniaca), identifying a major locus on chromosome 1 which explains most of the variability for plum pox virus (PPV) resistance trait. A set of molecular markers associated with the resistance has been developed and validated in different genetic backgrounds, endorsing their application for breeding purposes. Particularly for complex traits as the PPV resistance, requiring long and expensive phenotyping procedures, marker-assisted selection (MAS) bears a great potential to improve the efficiency of conventional breeding. In this work, novel HRM (high-resolution melting) assays were designed for the genotyping of resistant/susceptible alleles at PPV resistance (PPVres) locus. The assays were tested on 51 apricot cultivars and breeding selections already phenotyped for PPV resistance and cross-validated with standard short simple repeat marker data. We demonstrated that three HRM assays, PGS1.21_SNP, PGS1.24_SNP, and ZP002_DEL, represent a reliable, quick, and cost-effective genotyping approach, particularly suitable as high-throughput screening method for large-scale breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Chunlin H, Holme J, Anthony J (2014) SNP genotyping: the KASP assay. Crop breeding. Methods Mol Biol 1145:75–86

    Article  Google Scholar 

  • Collard BC, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Phil Trans R Soc B 363:557–572

    Article  CAS  PubMed  Google Scholar 

  • Decroocq S, Chague A, Lambert P, Roch G, Audergon JM, Geuna F, Chiozzotto R, Bassi D, Dondini L, Tartarini S (2014) Selecting with markers linked to the PPVres major QTL is not sufficient to predict resistance to plum pox virus (PPV) in apricot. Tree Genet Genomes 10:1161–1170

    Article  Google Scholar 

  • Decroocq S, Cornille A, Tricon D, Babayeva S, Chague A, Eyquard J-P, Karychev R, Dolgikh S, Kostritsyna T et al (2016) New insights into the history of domesticated and wild apricots and its contribution to plum pox virus resistance. Mol Ecol 25(19):4712–4729

    Article  CAS  PubMed  Google Scholar 

  • Dondini L, Lain O, Vendramin V, Rizzo M, Vivoli D, Adami M, Guidarelli M, Gaiotti F, Palmisano F, Bazzoni A (2011) Identification of QTL for resistance to plum pox virus strains M and D in Lito and Harcot apricot cultivars. Mol Breed 27:289–299

    Article  Google Scholar 

  • Dosba F, Denise F, Maison P, Massonié G, Audergon JM (1991) Plum pox virus resistance of apricot. Acta Hortic 293:569–579

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Dwight Z, Palais R, Wittwer CT (2011) uMELT: prediction of high-resolution melting curves and dynamic melting profiles of PCR products in a rich web application. Bioinformatics 27:1019–1020

    Article  CAS  PubMed  Google Scholar 

  • Ganopoulos I, Argiriou A, Tsaftaris A (2011) Microsatellite high resolution melting (SSR-HRM) analysis for authenticity testing of protected designation of origin (PDO) sweet cherry products. Food Control 22:532–541

    Article  CAS  Google Scholar 

  • Kegler H, Hartmann W (1998) Present status of controlling conventional strains of plum pox virus. In: Hadidi A, Khetarpal RK, Koganezawa H (eds) Plant virus disease control 616–28. APS Press, St. Paul

    Google Scholar 

  • Kumar P, Gupta VK, Misra AK, Modi DR, Pandey BK (2009) Molecular markers in plant biotechnology. Plant Omics Journal 2:141–162

    CAS  Google Scholar 

  • Lalli DA, Abbott AG, Zhebentyayeva TN, Badenes ML, Damsteegt V, Polak J, Krska B, Salava J (2008) A genetic linkage map for an apricot (Prunus armeniaca L.) BC1 population mapping plum pox virus resistance. Tree Genet Genomes 4:481–493

    Article  Google Scholar 

  • Lambert P, Dicenta F, Rubio M, Audergon JM (2007) QTL analysis of resistance to sharka disease in the apricot (Prunus armeniaca L.) ‘Polonais’ x ‘Stark Early Orange’ F1 progeny. Tree Genet Genomes 3:299–309

    Article  Google Scholar 

  • Liew M, Pryor R, Palais R, Meadows C, Erali M, Lyon E, Wittwer C (2004) Genotyping of single-nucleotide polymorphisms by high-resolution melting of small amplicons. Clin Chem 50:1156–1164

    Article  CAS  PubMed  Google Scholar 

  • Mader E, Lukas B, Novak J (2008) A strategy to setup codominant microsatellite analysis for high-resolution-melting-curve-analysis (HRM). BMC Genet 9:69

    Article  PubMed  PubMed Central  Google Scholar 

  • Marandel G, Salava J, Abbott A, Candresse T, Decroocq V (2009) Quantitative trait loci meta-analysis of plum pox virus resistance in apricot (Prunus armeniaca L.): new insights on the organization and the identification of genomic resistance factors. Mol Plant Pathol 10:347–360

    Article  CAS  PubMed  Google Scholar 

  • Mariette S, Wong Jun Tai F, Roch G, Barre A, Chague A, Decroocq S (2015) Genome-wide association links candidate genes to resistance to plum pox virus in apricot (Prunus armeniaca). New Phytol 209:773–784

    Article  PubMed  Google Scholar 

  • Martìnez-Gòmez P, Rubio M, Dicenta F (2003) Evaluation of resistance to plum pox virus of north American and European apricot cultivars. Hort Sci 38:568–569

    Google Scholar 

  • Moose SP, Mumm RH (2008) Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiol 147:969–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pilarova P, Marandel G, Decroocq V, Salava J, Krka B, Abbott AG (2010) Quantitative trait analysis of resistance to plum pox virus in the apricot F1 progeny ‘Harlayne’ x ‘Vestar’. Tree Genet Genomes 6:467–475

    Article  Google Scholar 

  • Rankovic M, Dulic-Markovic S, Paunovic S (1999) Sharka virus in apricot and its diagnosis. Acta Hort 488:783–786

    Article  Google Scholar 

  • Reed GH, Wittwer CT (2004) Sensitivity and specificity of single-nucleotide polymorphism scanning by high-resolution melting analysis. Clin Chem 50(10):1748–1754

  • Simko I (2016) High-resolution DNA melting analysis in plant research. Trends Plant Sci 21:528–537

    Article  CAS  PubMed  Google Scholar 

  • Soriano JM, Vera-Ruiz EM, Vilanova S, Martinez-Calvo J, Llacer G, Badenes ML, Romero C (2008) Identification and mapping of a locus conferring plum pox virus resistance in two apricot improved linkage maps. Tree Genet Genomes 4:391–400

    Article  Google Scholar 

  • Soriano JM, Domingo ML, Zuriaga E, Romero C, Zhebentyayeva T, Abbott AG, Badenes ML (2012) Identification of simple sequence repeat markers tightly linked to plum pox virus resistance in apricot. Mol Breeding 30:1017–1026

    Article  CAS  Google Scholar 

  • Stylianidis DC, Sotiropoulos E, Syrgiannidis G, Therios IN, Mainou A, Karagianni I, Isaakidis A (2005) Effect of the Sharka (plum pox virus) disease on the nutrient status of the apricot (Prunus armeniaca L.) cultivars ‘Harcot’ and ‘Bebeco’ and expression of symptoms of the physiological disorder tip burn of fruits of the cv. ‘Bebeco’. Eur J Hortic Sci 70:121–124

    CAS  Google Scholar 

  • Trandafirescu M, Dumitru LM, Trandafirescu I (2013) Evaluating the resistance to the plum pox virus of some apricot tree cultivars and hybrids in south-eastern Romania. Proceedings of the Latvian Academy of Sciences, Section B 67:203–206

    Google Scholar 

  • Vera Ruiz EM, Soriano JM, Romero C, Zhebentyayeva T, Terol J, Zuriaga E, Llacer G, Abbott AG, Badenes ML (2011) Narrowing down the apricot plum pox virus resistance locus and comparative analysis with the peach genome syntenic region. Mol Plant Pathol 12:535–547

    Article  PubMed  Google Scholar 

  • Zuriaga E, Soriano JM, Zhebentyayeva T, Romero C, Dardick C, Canizares JG, Badenes ML (2013) Genomic analysis reveals MATH gene(s) as candidate(s) for plum pox virus (PPV) resistance in apricot (Prunus armeniaca L.) Mol Plant Pathol 14:663–666

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Stéphane Decroocq for providing SNP information and whole-genome sequencing data of 66 apricot accessions, funded by the France project ANR ABRIWG. The authors wish to thank Dr.ssa Lecchi Cristina (UNIMI, Milan, Italy) for technical assistance in HRM analysis and S. Foschi and M. Lama (CRPV, Cesena, Italy) for technical assistance in field operations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Cirilli.

Ethics declarations

Fundings

This work was supported by the MAS.PES (Italian project aimed at apricot and peach breeding, http://www.maspes.org/) and by FP7 project MARS (European project for Marker Assisted Resistance to Sharka, https://www6.inra.fr/mars/) (EC# 613654).

Electronic supplementary material

Supplemental Fig. 1

Derivative melting profiles of the four HRM assays (ZP002_DEL, PGS1.24_SNP, PGS1.21_SNP, and ZP002_SNP) as simulated in silico by using uMELT-HETS and uMELT-BATCH melting prediction tools. (JPEG 27 kb)

High resolution image (TIFF 395 kb)

Supplemental Fig. 2

Derivative fluorescence melting curve analyses for the marker ZP002_DEL on a 7300 Real Time PCR instrument (Thermo Scientific, USA) on two biological replicates of the samples ‘BO03615049’, ‘Lito’ and ‘Portici’ (left panel) and on a set of 48 among apricot accessions/breeding selections carrying on different dosage of the resistant alleles (right panel). Only a subset of the samples are depicted on the right panel to improve the visualization of the melting curves. (JPEG 13 kb)

High resolution image (TIFF 214 kb)

Supplemental Fig. 3

Amplicon size confirmation by 3% agarose-gel electrophoresis for the four tested markers ZP002_DEL, PGS1.24_SNP, PGS1.21_SNP and ZP002_SNP. (JPEG 7 kb)

High resolution image (TIFF 344 kb)

Supplemental Fig. 4

Derivative fluorescence and normalized fluorescence profiles of the HRM analysis for the markers ZP002_DEL (A, B), PGS1.24_SNP (C, D) and PGS1.21_SNP (E, F) on a set of 48 samples among apricot accessions/breeding selections carry on different dosage of the resistant alleles: homozygote resistant allele (brown lines), heterozygote (green lines) or homozygote for the susceptible allele (blue lines). (JPEG 45 kb)

High resolution image (TIFF 892 kb)

Supplemental Fig. 5

Frequencies of PPV resistant (no symptoms, RT-PCR negative), tolerant (no symptoms, RT-PCR positive) and susceptible individuals in an F1 progenies from the cross ‘Lito’ (resistant parents, heterozygous for the resistant allele at the three marker loci ZP002_DEL, PGS1.24_SNP, PGS1.21_SNP) x ‘BO81604311’ (susceptible parents). The presence/absence of the resistant/susceptible allele at all the three marker loci is indicate with R and S haplotype, respectively. (JPEG 13 kb)

High resolution image (TIFF 177 kb)

Supplemental Table 1

Name, origin, phenotype and genotype of the 51 among accessions and breeding selections sampled from CRPV (Centro Ricerche Produzioni Vegetali) experiment station (Faenza, Italy). 1Babini A.R., Phytosanitary Service, CRPV; 2Martínez-Gómez et al. (2003); 3Stylianidis et al. (2005); 4Rankovic et al. (1999); and 5Trandafirescu et al. (2013). (DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Passaro, M., Geuna, F., Bassi, D. et al. Development of a high-resolution melting approach for reliable and cost-effective genotyping of PPVres locus in apricot (P. armeniaca). Mol Breeding 37, 74 (2017). https://doi.org/10.1007/s11032-017-0666-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-017-0666-0

Keywords

Navigation