Skip to main content
Log in

Development of a large set of SNP markers for assessing phylogenetic relationships between the olive cultivars composing the Israeli olive germplasm collection

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

The olive (Olea europaea L.) was domesticated in the Mediterranean area over 6000 years ago and is currently one of the area’s most important oleaginous crops. Due to its economic, cultural and ecological importance, breeding programs aimed at obtaining new olive cultivars have been developed in most olive-producing countries. An efficient breeding program requires a large and genetically variable germplasm collection. In this study, we used next-generation sequencing technology for the identification of 145,974 single nucleotide polymorphism (SNPs) loci. A subset of 138 SNPs was then used to analyze the genetic relationships between 119 cultivars making up most of the Israeli germplasm collection. The various cultivars did not cluster according to their geographic origin but rather showed a high correlation with their function (oil, table or dual purpose). Comparison of genetic diversity between 15 cultivars using SSRs and SNPs revealed that for the purposes of analyzing genetic variation between olive cultivars, the SSR marker seems more suitable. However, based on the analysis of several trees of the same cultivar sampled from different nurseries, the SNP marker proved to be a more reliable criterion for cultivar identification. This study presents the most comprehensive SNP analysis of olive phylogeny to date. Based on the rapid development of SNP genotyping methods over the last few years, we believe that in the near future, we will be able to genotype many sample genomes using the appropriate SNPs at a reasonably low cost. Therefore, we can expect that in the future, SNPs will definitely be the marker of choice for biodiversity analysis as well as for gene cloning and QTL identification in olives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alagna F et al (2009) Comparative 454 pyrosequencing of transcripts from two olive genotypes during fruit development. BMC Genom 10:399. doi:10.1186/1471-2164-10-399

    Article  Google Scholar 

  • Albertini E et al (2011) Structure of genetic diversity in Olea europaea L. cultivars from central Italy. Mol Breed 27:533–547. doi:10.1007/s11032-010-9452-y

    Article  Google Scholar 

  • Angiolillo A, Mencuccini M, Baldoni L (1999) Olive genetic diversity assessed using amplified fragment length polymorphisms. Theor Appl Genet 98:411–421. doi:10.1007/s001220051087

    Article  CAS  Google Scholar 

  • Awan AA, Zubair M, Iqbal A, Abbas SJ, Ali N (2011) Molecular analysis of genetic diversity in olive cultivars. Afr J Agric Res 6:4937–4940. doi:10.5897/AJAR11.604

    Google Scholar 

  • Baldoni L, Belaj A (2010) Olive. In: Vollmann J, Rajcan I (eds) Oil crops, vol 4. Handbook of plant breeding. Springer, New York, pp 397–421. doi:10.1007/978-0-387-77594-4_13

  • Baldoni L et al (2006) Genetic structure of wild and cultivated olives in the central Mediterranean basin. Ann Bot 98:935–942. doi:10.1093/aob/mcl178

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bazakos C, Dulger AO, Uncu AT, Spaniolas S, Spano T, Kalaitzis P (2012) A SNP-based PCR-RFLP capillary electrophoresis analysis for the identification of the varietal origin of olive oils. Food Chem 134:2411–2418. doi:10.1016/j.foodchem.2012.04.031

    Article  CAS  PubMed  Google Scholar 

  • Beghe D, Ferrarini A, Ganino T, Fabbri A (2011) Molecular characterization and identification of a group of local Olea europaea L. varieties. Tree Genet Genomes 7:1185–1198. doi:10.1007/s11295-011-0405-3

    Article  Google Scholar 

  • Belaj A et al (2012) Developing a core collection of olive (Olea europaea L.) based on molecular markers (DArTs, SSRs, SNPs) and agronomic traits. Tree Genet Genomes 8:365–378. doi:10.1007/s11295-011-0447-6

    Article  Google Scholar 

  • Ben-Ari G, Lavi U (2012) 11 - marker-assisted selection in plant breeding. In: Altman A, Hasegawa PM (eds) Plant biotechnology and agriculture. Academic Press, San Diego, pp 163–184. doi:10.1016/B978-0-12-381466-1.00011-0

  • Ben-Ari G, Zenvirth D, Sherman A, Simchen G, Lavi U, Hillel J (2005) Application of SNPs for assessing biodiversity and phylogeny among yeast strains. Heredity 95:493–501. doi:10.1038/sj.hdy.6800759

    Article  CAS  PubMed  Google Scholar 

  • Besnard G, Berville A (2002) On chloroplast DNA variations in the olive (Olea europaea L.) complex: comparison of RFLP and PCR polymorphisms. Theor Appl Genet 104:1157–1163. doi:10.1007/s00122-001-0834-8

    Article  CAS  PubMed  Google Scholar 

  • Besnard G et al (2013) The complex history of the olive tree: from Late Quaternary diversification of Mediterranean lineages to primary domestication in the northern Levant P. Roy Soc B-Biol Sci. doi:10.1098/rspb.2012.2833

  • Biton I, Shevtsov S, Ostersetzer O, Mani Y, Lavee S, Avidan B, Ben-Ari G (2012) Genetic relationships and hybrid vigour in olive (Olea europaea L.) by microsatellites. Plant Breeding 131:767–774. doi:10.1111/pbr.12001

    Article  CAS  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data bioinformatics. doi:10.1093/bioinformatics/btu170

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bracci T, Busconi M, Fogher C, Sebastiani L (2011) Molecular studies in olive (Olea europaea L.): overview on DNA markers applications and recent advances in genome analysis. Plant Cell Rep 30:449–462. doi:10.1007/s00299-010-0991-9

    Article  CAS  PubMed  Google Scholar 

  • Cipriani G, Marrazzo MT, Marconi R, Cimato A, Testolin R (2002) Microsatellite markers isolated in olive (Olea europaea L.) are suitable for individual fingerprinting and reveal polymorphism within ancient cultivars. Theor Appl Genet 104:223–228. doi:10.1007/s001220100685

    Article  CAS  PubMed  Google Scholar 

  • Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos T R Soc B 363:557–572

    Article  CAS  Google Scholar 

  • Corrado G, Imperato A, La Mura M, Perri E, Rao R (2011) Genetic diversity among olive varieties of southern Italy and the traceability of olive oil using SSR markers J Hortic Sci. Biotech 86:461–466

    Google Scholar 

  • Delgado-Martinez FJ, Amaya I, Sanchez-Sevilla JF, Gomez-Jimenez MC (2012) Microsatellite marker-based identification and genetic relationships of olive cultivars from the Extremadura region of Spain. Genet Mol Res 11:918–932. doi:10.4238/2012.April.10.7

    Article  CAS  PubMed  Google Scholar 

  • DePristo MA et al (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data Nat Genet 43:491–498. doi:10.1038/ng.806

    CAS  Google Scholar 

  • Domínguez-García MC et al. (2012) Development of DArT markers in olive (Olea europaea L.) and usefulness in variability studies and genome mapping Sci Hortic 136:50-60 doi:10.1016/j.scienta.2011.12.017

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue Phytochemical Bull 19:11–15

    Google Scholar 

  • Earl D, vonHoldt B (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method Conservation Genet Resour 4:359–361. doi:10.1007/s12686-011-9548-7

    Google Scholar 

  • El Bakkali A, Haouane H, Moukhli A, Costes E, Van Damme P, Khadari B (2013) Construction of core collections suitable for association mapping to optimize use of mediterranean olive (Olea europaea L.) genetic resources. PLoS ONE 8:e61265. doi:10.1371/journal.pone.0061265

    Article  PubMed Central  PubMed  Google Scholar 

  • Ellegren H (2004) Microsatellites: simple sequences with complex evolution. Nat Rev Genet 5:435–445

    Article  CAS  PubMed  Google Scholar 

  • Ercisli S, Ipek A, Barut E (2011) SSR marker-based DNA fingerprinting and cultivar identification of olives (Olea europaea). Biochem Genet 49:555–561. doi:10.1007/s10528-011-9430-z

    Article  CAS  PubMed  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620. doi:10.1111/j.1365-294X.2005.02553.x

    Article  CAS  PubMed  Google Scholar 

  • Hagidimitriou M, Katsiotis A, Menexes G, Pontikis C, Loukas M (2005) Genetic diversity of major Greek olive cultivars using molecular (AFLPs and RAPDs) markers and morphological traits. J Am Soc Hortic Sci 130:211–217

    CAS  Google Scholar 

  • Hakim IR, Kammoun NG, Makhloufi E, Rebaï A (2010) Discovery and potential of SNP markers in characterization of tunisian olive germplasm Diversity 2:17–27. doi:10.3390/d2010017

    CAS  Google Scholar 

  • Haouane H et al (2011) Genetic structure and core collection of the World Olive Germplasm Bank of Marrakech: towards the optimised management and use of Mediterranean olive genetic resources. Genetica 139:1083–1094. doi:10.1007/s10709-011-9608-7

    Article  PubMed Central  PubMed  Google Scholar 

  • Kaniewski D, Van Campo E, Boiy T, Terral J-F, Khadari B, Besnard G (2012) Primary domestication and early uses of the emblematic olive tree: palaeobotanical, historical and molecular evidence from the Middle East. Biol Rev 87:885–899. doi:10.1111/j.1469-185X.2012.00229.x

    Article  PubMed  Google Scholar 

  • Kaya HB, Cetin O, Kaya H, Sahin M, Sefer F, Kahraman A, Tanyolac B (2013) SNP discovery by Illumina-based transcriptome sequencing of the olive and the genetic characterization of turkish olive genotypes revealed by AFLP. SSR and SNP markers PLoS ONE 8:e73674. doi:10.1371/journal.pone.0073674

    Article  CAS  Google Scholar 

  • Koehmstedt A, Aradhya M, Soleri D, Smith J, Polito V (2011) Molecular characterization of genetic diversity, structure, and differentiation in the olive (Olea europaea L.) germplasm collection of the United States Department of Agriculture Genet Resour Crop Evol 58:519-531 doi:10.1007/s10722-010-9595-z

  • Kronholm I, Loudet O, de Meaux J (2010) Influence of mutation rate on estimators of genetic differentiation - lessons from Arabidopsis thaliana. BMC Genet. doi:10.1186/1471-2156-11-33

    PubMed  Google Scholar 

  • Langmead B, Trapnell C, Pop M, Salzberg S (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    Article  PubMed Central  PubMed  Google Scholar 

  • Lavee S (1978) “Kadesh” table olive. HortScience 13:62–63

    Google Scholar 

  • Lavee S (1990) Aims methods and advances in breeding new olive (Olea europaea L.) cultivars. Acta Hortic 286:23–36

    Google Scholar 

  • Lavee S, Avidan B (2000) Olive germplasm development past and present approaches to genetic improvement. Acta Hortic 586:47–56

    Google Scholar 

  • Lavee S, Avidan B, Meni Y (2003) ‘Askal’, a new high-performing oil variety for intensive and super-intensive olive orchard Olivae 97:53-59

  • Lavee S, Avidan B, Meni Y, Haskal A, Wodner M (2004) Three new varieties of semi-dwarf table olives Olivae 102:33–41

    Google Scholar 

  • Lavee S et al. (1999) “Maalot” a new orchard-resistant cultivar to Peacock Eye leaf Spot (Spilocaea oleagina, cast.) Olivae 78:51-59

  • Lavee S, Haskal A, Vodner M (1986) “Barnea”, a new olive cultivar from first breeding generation Olea 17:95-99

  • Leva AR, Petruccelli R (2012) Monitoring of cultivar identity in micropropagated olive plants using RAPD and ISR markers Biol Plant 56:373–376. doi:10.1007/s10535-012-0102-6

    CAS  Google Scholar 

  • Li Y-C, Korol AB, Fahima T, Beiles A, Nevo E (2002) Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol 11:2453–2465. doi:10.1046/j.1365-294X.2002.01643.x

    Article  CAS  PubMed  Google Scholar 

  • Lopes MS, Mendonça D, Sefc KM, Gil FS (2004) da Câmara Machado A. Genetic Evidence of Intra-cultivar Variability within Iberian Olive Cultivars HortScience 39:1562–1565

    CAS  Google Scholar 

  • Macedo ES et al (2009) Physiologic responses and gene diversity indicate olive alternative oxidase as a potential source for markers involved in efficient adventitious root induction Physiol Plantarum 137:532–552. doi:10.1111/j.1399-3054.2009.01302.x

    CAS  Google Scholar 

  • Marieschi M, Torelli A, Bianchi A, Bruni R (2011) Development of a SCAR marker for the identification of Olea europaea L.: A newly detected adulterant in commercial Mediterranean oregano. Food Chem 126:705–709. doi:10.1016/j.foodchem.2010.11.030

    Article  CAS  Google Scholar 

  • McKenna A et al (2010) The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303. doi:10.1101/gr.107524.110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Muleo R, Colao MC, Miano D, Cirilli M, Intrieri MC, Baldoni L, Rugini E (2009) Mutation scanning and genotyping by high-resolution DNA melting analysis in olive germplasm. Genome 52:252–260. doi:10.1139/g09-002

    Article  CAS  PubMed  Google Scholar 

  • Odong TL, Heerwaarden J, Jansen J, Hintum TJL, Eeuwijk FA (2011) Determination of genetic structure of germplasm collections: are traditional hierarchical clustering methods appropriate for molecular marker data? Theor Appl Genet 123:195–205. doi:10.1007/s00122-011-1576-x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Panelli G, Famiani F, Rugini E, Bignani D, Natali S (1990) Preliminary characterization of olive somatic mutants from gamma irradiated ‘Frantoio’ and ‘Leccino’ plantlets Acta Hort 286:77–80

  • Paradis E, Claude J, Strimmer K (2004) APE: Analyses of Phylogenetics and Evolution in R language Bioinformatics 20:289-290 doi:10.1093/bioinformatics/btg412

  • Parra-Lobato MC, Delgado-Martinez FJ, Gomez-Jimenez MC (2012) Morphological traits and RAPD markers for characterization and identification of minor Spanish olive cultivars from the Extremadura region. Genet Mol Res 11:2401–2411. doi:10.4238/2012.May.10.6

    Article  CAS  PubMed  Google Scholar 

  • Popescu A-A, Huber KT, Paradis E (2012) ape 3.0: New tools for distance-based phylogenetics and evolutionary analysis in R Bioinformatics 28:1536-1537 doi:10.1093/bioinformatics/bts184

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed Central  CAS  PubMed  Google Scholar 

  • Reale S et al (2006) SNP-based markers for discriminating olive (Olea europaea L.) cultivars. Genome 49:1193–1205. doi:10.1139/g06-068

    Article  CAS  PubMed  Google Scholar 

  • Rehman AU, Mailer RJ, Belaj A, De la Rosa R, Raman H (2012) Microsatellite marker-based identification of mother plants for the reliable propagation of olive (Olea europaea L.) cultivars in Australia J Hortic Sci. Biotech 87:647–653

    CAS  Google Scholar 

  • Rotondi A, Cultrera NGM, Mariotti R, Baldoni L (2011) Genotyping and evaluation of local olive varieties of a climatically disfavoured region through molecular, morphological and oil quality parameters Sci Hortic 130:562-569 doi:10.1016/j.scienta.2011.08.005

  • Sarri V et al (2006) Microsatellite markers are powerful tools for discriminating among olive cultivars and assigning them to geographically defined populations. Genome 49:1606–1615. doi:10.1139/g06-126

    Article  CAS  PubMed  Google Scholar 

  • Zaher H, Boulouha B, Baaziz M, Sikaoui L, Gaboun F, Udupa SM (2011) Morphological and genetic diversity in olive (Olea europaea subsp europaea L.) clones and varieties Plant. OMICS 4:370–376

    CAS  Google Scholar 

  • Zhou N, Wang L (2007) Effective selection of informative SNPs and classification on the HapMap genotype data. BMC Bioinformatics. doi:10.1186/1471-2105-8-484

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giora Ben-Ari.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1: List of all analyzed cultivars - the Israeli germplasm collection. (XLSX 13 kb)

11032_2015_304_MOESM2_ESM.xlsx

Table S2: List of the 138 SNPs used in this study. For each SNP we specified the flanking sequences as well as its two alleles, PIC and Ho values, the contig (oleaestdb) where the SNP is located as well as its position within this contig and the quality score. (XLSX 23 kb)

11032_2015_304_MOESM3_ESM.pdf

Fig. S1: Morphological variation among fruits of all cultivars from the Israeli germplasm collection. Fruits of all analyzed cultivars are presented. Each cultivar is represented by one fruit and the variation of fruit size and shape between cultivars can be assessed. (PDF 405 kb)

11032_2015_304_MOESM4_ESM.pdf

Fig. S2: A flow chart of the study including the various steps carried out for SNPs identification (blue rectangles), SNPs genotyping (red rectangles) and SNP analysis (green rectangles). (PDF 46 kb)

11032_2015_304_MOESM5_ESM.pdf

Fig. S3: Multiple alignments of the deep sequencing results. The output of the Genome Analysis Toolkit (GATK) software version 2.5.2 (McKenna et al. 2010) that was used for the detection of SNPs between ‘Barnea’ and ‘Manzanillo.’ Each raw presented one sequence read of ‘Barnea’ (green) or ‘Manzanillo’ (yellow). Two SNP loci in the presented sequences are shown (A/T and T/C). (PDF 273 kb)

Fig. S4: Distribution of cleaned sequence lengths over all sequences. (PDF 78 kb)

11032_2015_304_MOESM7_ESM.pdf

Fig. S5: Distribution of various types of identified SNPs. SNPs were characterized by their genotypes in the sequenced cultivars, ‘Barnea’ and ‘Manzanillo’ and divided into four groups: Heterozygote only in ‘Barnea,’ heterozygote only in ‘Manzanillo,’ heterozygote in both cultivars and homozygote to different alleles in each of the two cultivars. (PDF 65 kb)

11032_2015_304_MOESM8_ESM.pdf

Fig. S6: Delta K value for K = 3–14. The true number of subpopulation of all cultivars making up the Israeli germplasm collection using STRUCTURE and STRUCTURE HARVESTER. The peak at K = 3 indicates the most likely value of K. (PDF 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biton, I., Doron-Faigenboim, A., Jamwal, M. et al. Development of a large set of SNP markers for assessing phylogenetic relationships between the olive cultivars composing the Israeli olive germplasm collection. Mol Breeding 35, 107 (2015). https://doi.org/10.1007/s11032-015-0304-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-015-0304-7

Keywords

Navigation