Skip to main content
Log in

Synthesis, biological evaluation, theoretical investigations, docking study and ADME parameters of some 1,4-bisphenylhydrazone derivatives as potent antioxidant agents and acetylcholinesterase inhibitors

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Five 1,4-bisphenylhydrazone derivatives (15) were successfully synthesized and evaluated for their antioxidant and acetylcholinesterase inhibitory activities. The antioxidant activity has been carried out using DPPH, ABTS, CUPRAC and superoxide radical scavenging methods. All the compounds showed a very good antioxidant activity compared to that of the standards used. Compound 1 was found to be the best antioxidant agent with IC50 values lower or comparable to that of the standards. The acetylcholinesterase inhibitory activity has been evaluated using a modified Ellman’s assay. The obtained results indicate that compound 2 is the best acetylcholinesterase inhibitor with a low IC50 value comparable to that of the galantamine. In addition, DFT calculations have been performed to determine in which mechanism the synthesized hydrazones follow to scavenge free radicals. Molecular docking study was performed for compound 2, and its interaction modes with the enzyme acetylcholinesterase were determined. As a result, a strong interaction between this compound and the active site of AChE enzyme was revealed. Finally, ADME properties of the synthesized compounds were also studied and showed good drug-like properties.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Xiang Y, Tong A, Jin P, Ju Y (2006) New fluorescent rhodamine hydrazone chemosensor for Cu(II) with high selectivity and sensitivity. Org Lett 8(13):2863–2866. https://doi.org/10.1021/ol0610340

    Article  CAS  PubMed  Google Scholar 

  2. Patil DY, Patil AA, Khadke NB, Borhade AV (2019) Highly selective and sensitive colorimetric probe for Al3+ and Fe33+ metal ions based on 2-aminoquinolin-3-yl phenyl hydrazone Schiff base. Inorg Chim Acta 492:167–176

    Article  CAS  Google Scholar 

  3. Li Y, Wang C, Ma S, Zhang H, Ou J, Wei Y, Ye M (2019) Fabrication of hydrazone-linked covalent organic frameworks using alkyl amine as building block for high adsorption capacity of metal ions. ACS Appl Mater Interfaces 11(12):11706–11714

    Article  CAS  Google Scholar 

  4. Cappello D, Therien DAB, Staroverov VN, Lagugné-Labarthet F, Gilroy JB (2019) Optoelectronic, aggregation, and redox properties of double-rotor boron difluoride hydrazone dyes. Chem A Eur J 25(23):5994–6006

    Article  CAS  Google Scholar 

  5. Shen P, Liu X, Jiang S, Wang L, Yi L, Ye D, Zhao B, Tan S (2012) Synthesis of new N, N-diphenylhydrazone dyes for solar cells: effects of thiophene-derived π-conjugated bridge. Dyes Pigments 92(3):1042–1051

    Article  CAS  Google Scholar 

  6. Pouralimardan O, Chamayou A-C, Janiak C, Hosseini-Monfared H (2007) Hydrazone Schiff base-manganese (II) complexes: synthesis, crystal structure and catalytic reactivity. Inorg Chim Acta 360(5):1599–1608

    Article  CAS  Google Scholar 

  7. Nasr T, Bondock S, Youns M (2014) Anticancer activity of new coumarin substituted hydrazide–hydrazone derivatives. Eur J Med Chem 76:539–548

    Article  CAS  Google Scholar 

  8. Ajani OO, Obafemi CA, Nwinyi OC, Akinpelu DA (2010) Microwave assisted synthesis and antimicrobial activity of 2-quinoxalinone-3-hydrazone derivatives. Bioorg Med Chem 18(1):214–221

    Article  CAS  Google Scholar 

  9. Özkay Y, Tunalı Y, Karaca H, Işıkdağ İ (2010) Antimicrobial activity and a SAR study of some novel benzimidazole derivatives bearing hydrazone moiety. Eur J Med Chem 45(8):3293–3298. https://doi.org/10.1016/j.ejmech.2010.04.012

    Article  CAS  PubMed  Google Scholar 

  10. Debnath U, Mukherjee S, Joardar N, Babu SPS, Jana K, Misra AK (2019) Aryl quinolinyl hydrazone derivatives as anti-inflammatory agents that inhibit TLR4 activation in the macrophages. Eur J Pharm Sci 134:102–115

    Article  CAS  Google Scholar 

  11. Jia C, Yuan X, Liu X, Zhang L, Xiao Y, Fu B, Li J-Q, Qin Z (2019) Synthesis and fungicidal activity of (E)-methyl 2-(2-((1-cyano-2-hydrocarbylidenehydrazinyl)methyl)phenyl)-2-(methoxyimino)acetates. Pest Manag Sci 75(12):3160–3166. https://doi.org/10.1002/ps.5432

    Article  CAS  PubMed  Google Scholar 

  12. Patole J, Sandbhor U, Padhye S, Deobagkar DN, Anson CE, Powell A (2003) Structural chemistry and in vitro antitubercular activity of acetylpyridine benzoyl hydrazone and its copper complex against Mycobacterium smegmatis. Bioorg Med Chem Lett 13(1):51–55

    Article  CAS  Google Scholar 

  13. El-Sabbagh OI, Rady HM (2009) Synthesis of new acridines and hydrazones derived from cyclic β-diketone for cytotoxic and antiviral evaluation. Eur J Med Chem 44(9):3680–3686

    Article  CAS  Google Scholar 

  14. Belkheiri N, Bouguerne B, Bedos-Belval F, Duran H, Bernis C, Salvayre R, Nègre-Salvayre A, Baltas M (2010) Synthesis and antioxidant activity evaluation of a syringic hydrazones family. Eur J Med Chem 45(7):3019–3026

    Article  CAS  Google Scholar 

  15. Yılmaz AD, Coban T, Suzen S (2012) Synthesis and antioxidant activity evaluations of melatonin-based analogue indole-hydrazide/hydrazone derivatives. J Enzyme Inhib Med Chem 27(3):428–436

    Article  Google Scholar 

  16. Nastasă C, Tiperciuc B, Duma M, Benedec D, Oniga O (2015) New hydrazones bearing thiazole scaffold: synthesis, characterization, antimicrobial, and antioxidant investigation. Molecules 20(9):17325–17338

    Article  Google Scholar 

  17. Puskullu MO, Shirinzadeh H, Nenni M, Gurer-Orhan H, Suzen S (2016) Synthesis and evaluation of antioxidant activity of new quinoline-2-carbaldehyde hydrazone derivatives: bioisosteric melatonin analogues. J Enzyme Inhib Med Chem 31(1):121–125

    Article  CAS  Google Scholar 

  18. Aruoma OI (1998) Free radicals, oxidative stress, and antioxidants in human health and disease. J Am Oil Chem Soc 75(2):199–212

    Article  CAS  Google Scholar 

  19. Jenner P (2003) Oxidative stress in Parkinson’s disease. Ann Neurol Off J Am Neurol Assoc Child Neurol Soc 53(S3):S26–S38

    CAS  Google Scholar 

  20. Kareem HS, Ariffin A, Nordin N, Heidelberg T, Abdul-Aziz A, Kong KW, Yehye WA (2015) Correlation of antioxidant activities with theoretical studies for new hydrazone compounds bearing a 3, 4, 5-trimethoxy benzyl moiety. Eur J Med Chem 103:497–505

    Article  CAS  Google Scholar 

  21. Peerannawar S, Horton W, Kokel A, Török F, Török M, Török B (2017) Theoretical and experimental analysis of the antioxidant features of diarylhydrazones. Struct Chem 28(2):391–402

    Article  CAS  Google Scholar 

  22. Talesa VN (2001) Acetylcholinesterase in Alzheimer’s disease. Mech Ageing Dev 122(16):1961–1969

    Article  CAS  Google Scholar 

  23. Blois MS (1958) Antioxidant determinations by the use of a stable free radical. Nature 181(4617):1199

    Article  CAS  Google Scholar 

  24. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26(9–10):1231–1237

    Article  CAS  Google Scholar 

  25. Apak R, Güçlü K, Özyürek M, Karademir SE (2004) Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J Agric Food Chem 52(26):7970–7981. https://doi.org/10.1021/jf048741x

    Article  CAS  PubMed  Google Scholar 

  26. Hyland K, Voisin E, Banoun H, Auclair C (1983) Superoxide dismutase assay using alkaline dimethylsulfoxide as superoxide anion-generating system. Anal Biochem 135(2):280–287. https://doi.org/10.1016/0003-2697(83)90684-X

    Article  CAS  PubMed  Google Scholar 

  27. Rhee IK, van de Meent M, Ingkaninan K, Verpoorte R (2001) Screening for acetylcholinesterase inhibitors from Amaryllidaceae using silica gel thin-layer chromatography in combination with bioactivity staining. J Chromatogr A 915(1):217–223. https://doi.org/10.1016/S0021-9673(01)00624-0

    Article  CAS  PubMed  Google Scholar 

  28. Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7(2):88–95. https://doi.org/10.1016/0006-2952(61)90145-9

    Article  CAS  PubMed  Google Scholar 

  29. Frisch MJ, Trucks G, Schlegel HB, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G (2009) Gaussian 09, revision A. 1. Gaussian Inc Wallingford CT 27:34

  30. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38(6):3098

    Article  CAS  Google Scholar 

  31. Hariharan PC, Pople JA (1973) The influence of polarization functions on molecular orbital hydrogenation energies. Theor Chim Acta 28(3):213–222. https://doi.org/10.1007/bf00533485

    Article  CAS  Google Scholar 

  32. Mikulski D, Molski M (2010) Quantitative structure–antioxidant activity relationship of trans-resveratrol oligomers, trans-4,4′-dihydroxystilbene dimer, trans-resveratrol-3-O-glucuronide, glucosides: trans-piceid, cis-piceid, trans-astringin and trans-resveratrol-4′-O-β-D-glucopyranoside. Eur J Med Chem 45(6):2366–2380. https://doi.org/10.1016/j.ejmech.2010.02.016

    Article  CAS  PubMed  Google Scholar 

  33. Praveena R, Sadasivam K, Deepha V, Sivakumar R (2014) Antioxidant potential of orientin: a combined experimental and DFT approach. J Mol Struct 1061:114–123. https://doi.org/10.1016/j.molstruc.2014.01.002

    Article  CAS  Google Scholar 

  34. Praveena R, Sadasivam K, Kumaresan R, Deepha V, Sivakumar R (2013) Experimental and DFT studies on the antioxidant activity of a C-glycoside from Rhynchosia capitata. Spectrochim Acta Part A Mol Biomol Spectrosc 103:442–452. https://doi.org/10.1016/j.saa.2012.11.001

    Article  CAS  Google Scholar 

  35. Boulebd H (2020) Comparative study of the radical scavenging behavior of ascorbic acid, BHT, BHA and Trolox: experimental and theoretical study. J Mol Struct 1201:127210. https://doi.org/10.1016/j.molstruc.2019.127210

    Article  CAS  Google Scholar 

  36. Boulebd H (2019) DFT study of the antiradical properties of some aromatic compounds derived from antioxidant essential oils: C–H bond vs. O–H bond. Free Radic Res 53(11–12):1125–1134. https://doi.org/10.1080/10715762.2019.1690652

    Article  CAS  PubMed  Google Scholar 

  37. Rimarčík J, Lukeš V, Klein E, Ilčin M (2010) Study of the solvent effect on the enthalpies of homolytic and heterolytic N–H bond cleavage in p-phenylenediamine and tetracyano-p-phenylenediamine. J Mol Struct (Thoechem) 952(1):25–30. https://doi.org/10.1016/j.theochem.2010.04.002

    Article  CAS  Google Scholar 

  38. Thong NM, Duong T, Pham LT, Nam PC (2014) Theoretical investigation on the bond dissociation enthalpies of phenolic compounds extracted from Artocarpus altilis using ONIOM (ROB3LYP/6-311++G (2df, 2p): PM6) method. Chem Phys Lett 613:139–145

    Article  CAS  Google Scholar 

  39. Thong NM, Quang DT, Bui NHT, Dao DQ, Nam PC (2015) Antioxidant properties of xanthones extracted from the pericarp of Garcinia mangostana (Mangosteen): a theoretical study. Chem Phys Lett 625:30–35

    Article  Google Scholar 

  40. Klein E, Rimarcik J, Lukes V (2009) DFT/B3LYP study of the O–H bond dissociation enthalpies and proton affinities of para-and meta-substituted phenols in water and benzene. Acta Chim Slovaca 2(2):37–51

    Google Scholar 

  41. Wright JS, Johnson ER, DiLabio GA (2001) Predicting the activity of phenolic antioxidants: theoretical method, analysis of substituent effects, and application to major families of antioxidants. J Am Chem Soc 123(6):1173–1183. https://doi.org/10.1021/ja002455u

    Article  CAS  PubMed  Google Scholar 

  42. Bartmess JE (1994) Thermodynamics of the electron and the proton. J Phys Chem 98(25):6420–6424. https://doi.org/10.1021/j100076a029

    Article  CAS  Google Scholar 

  43. Parker VD (1992) Homolytic bond (H–A) dissociation free energies in solution. Applications of the standard potential of the (H+/H.bul.) couple. J Am Chem Soc 114(19):7458–7462. https://doi.org/10.1021/ja00045a018

    Article  CAS  Google Scholar 

  44. Bizarro Magda M, Cabral BJC, dos Santos RMB, Simões JAM (1999) Substituent effects on the O–H bond dissociation enthalpies in phenolic compounds: agreements and controversies + erratum. Pure Appl Chem. https://doi.org/10.1351/pac199971071249

    Article  Google Scholar 

  45. Sánchez-Linares I, Pérez-Sánchez H, Cecilia JM, García JM (2012) High-throughput parallel blind virtual screening using BINDSURF. BMC Bioinform 13(14):S13

    Article  Google Scholar 

  46. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612

    Article  CAS  Google Scholar 

  47. Huang D, Ou B, Prior RL (2005) The chemistry behind antioxidant capacity assays. J Agric Food Chem 53(6):1841–1856. https://doi.org/10.1021/jf030723c

    Article  CAS  PubMed  Google Scholar 

  48. Apak R, Güçlü K, Özyürek M, Çelik SE (2008) Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay. Microchim Acta 160(4):413–419. https://doi.org/10.1007/s00604-007-0777-0

    Article  CAS  Google Scholar 

  49. Zhang M, Dai Z-C, Qian S-S, Liu J-Y, Xiao Y, Lu A-M, Zhu H-L, Wang J-X, Ye Y-H (2014) Design, synthesis, antifungal, and antioxidant activities of (E)-6-((2-phenylhydrazono)methyl)quinoxaline derivatives. J Agric Food Chem 62(40):9637–9643. https://doi.org/10.1021/jf504359p

    Article  CAS  PubMed  Google Scholar 

  50. Török B, Sood A, Bag S, Tulsan R, Ghosh S, Borkin D, Kennedy AR, Melanson M, Madden R, Zhou W, LeVine H, Török M (2013) Diaryl hydrazones as multifunctional inhibitors of amyloid self-assembly. Biochemistry 52(7):1137–1148. https://doi.org/10.1021/bi3012059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Settypalli T, Chunduri VR, Maddineni AK, Begari N, Allagadda R, Kotha P, Chippada AR (2019) Design, synthesis, in silico docking studies and biological evaluation of novel quinoxaline-hydrazide hydrazone-1,2,3-triazole hybrids as α-glucosidase inhibitors and antioxidants. New J Chem 43(38):15435–15452. https://doi.org/10.1039/C9NJ02580D

    Article  CAS  Google Scholar 

  52. Prior RL, Wu X, Schaich K (2005) Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 53(10):4290–4302

    Article  CAS  Google Scholar 

  53. Ames BN, Shigenaga MK, Hagen TM (1993) Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci USA 90(17):7915–7922

    Article  CAS  Google Scholar 

  54. Wang G, Xue Y, An L, Zheng Y, Dou Y, Zhang L, Liu Y (2015) Theoretical study on the structural and antioxidant properties of some recently synthesised 2,4,5-trimethoxy chalcones. Food Chem 171:89–97. https://doi.org/10.1016/j.foodchem.2014.08.106

    Article  CAS  PubMed  Google Scholar 

  55. Estévez L, Otero N, Mosquera RA (2010) A computational study on the acidity dependence of radical-scavenging mechanisms of anthocyanidins. J Phys Chem B 114(29):9706–9712. https://doi.org/10.1021/jp1041266

    Article  CAS  PubMed  Google Scholar 

  56. Zheng Y-Z, Deng G, Guo R, Fu Z-M, Chen D-F (2019) Theoretical insight into the antioxidative activity of isoflavonoid: the effect of the C2=C3 double bond. Phytochemistry 166:112075. https://doi.org/10.1016/j.phytochem.2019.112075

    Article  CAS  PubMed  Google Scholar 

  57. Zheng Y-Z, Deng G, Liang Q, Chen D-F, Guo R, Lai R-C (2017) Antioxidant activity of quercetin and its glucosides from propolis: a theoretical study. Sci Rep 7(1):7543

    Article  Google Scholar 

  58. Xue Y, Liu Y, Zhang L, Wang H, Luo Q, Chen R, Liu Y, Li Y (2019) Antioxidant and spectral properties of chalcones and analogous aurones: theoretical insights. Int J Quantum Chem 119(3):e25808. https://doi.org/10.1002/qua.25808

    Article  CAS  Google Scholar 

  59. Shang Y, Zhou H, Li X, Zhou J, Chen K (2019) Theoretical studies on the antioxidant activity of viniferifuran. New J Chem 43(39):15736–15742. https://doi.org/10.1039/C9NJ02735A

    Article  CAS  Google Scholar 

  60. Xue Y, Zheng Y, An L, Dou Y, Liu Y (2014) Density functional theory study of the structure–antioxidant activity of polyphenolic deoxybenzoins. Food Chem 151:198–206. https://doi.org/10.1016/j.foodchem.2013.11.064

    Article  CAS  PubMed  Google Scholar 

  61. Trouillas P, Marsal P, Siri D, Lazzaroni R, Duroux J-L (2006) A DFT study of the reactivity of OH groups in quercetin and taxifolin antioxidants: the specificity of the 3-OH site. Food Chem 97(4):679–688

    Article  CAS  Google Scholar 

  62. Sadasivam K, Kumaresan R (2011) Antioxidant behavior of mearnsetin and myricetin flavonoid compounds—a DFT study. Spectrochim Acta Part A Mol Biomol Spectrosc 79(1):282–293. https://doi.org/10.1016/j.saa.2011.02.042

    Article  CAS  Google Scholar 

  63. Politzer P, Laurence PR, Jayasuriya K (1985) Molecular electrostatic potentials: an effective tool for the elucidation of biochemical phenomena. Environ Health Perspect 61:191–202. https://doi.org/10.1289/ehp.8561191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rajan VK, Muraleedharan K (2017) A computational investigation on the structure, global parameters and antioxidant capacity of a polyphenol, Gallic acid. Food Chem 220:93–99. https://doi.org/10.1016/j.foodchem.2016.09.178

    Article  CAS  PubMed  Google Scholar 

  65. Karaman N, Sıcak Y, Taşkın-Tok T, Öztürk M, Karaküçük-İyidoğan A, Dikmen M, Koçyiğit-Kaymakçıoğlu B, Oruç-Emre EE (2016) New piperidine-hydrazone derivatives: synthesis, biological evaluations and molecular docking studies as AChE and BChE inhibitors. Eur J Med Chem 124:270–283. https://doi.org/10.1016/j.ejmech.2016.08.037

    Article  CAS  PubMed  Google Scholar 

  66. Petronilho E, Rennó M, Castro NG, da Silva FMR, Pinto A, Figueroa-Villar JD (2016) Design, synthesis, and evaluation of guanylhydrazones as potential inhibitors or reactivators of acetylcholinesterase. J Enzyme Inhib Med Chem 31(6):1069–1078. https://doi.org/10.3109/14756366.2015.1094468

    Article  CAS  Google Scholar 

  67. Tripathi RKP, Ayyannan SR (2018) Evaluation of 2-amino-6-nitrobenzothiazole derived hydrazones as acetylcholinesterase inhibitors: in vitro assays, molecular docking and theoretical ADMET prediction. Med Chem Res 27(3):709–725. https://doi.org/10.1007/s00044-017-2095-3

    Article  CAS  Google Scholar 

  68. Cheung J, Rudolph MJ, Burshteyn F, Cassidy MS, Gary EN, Love J, Franklin MC, Height JJ (2012) Structures of human acetylcholinesterase in complex with pharmacologically important ligands. J Med Chem 55(22):10282–10286. https://doi.org/10.1021/jm300871x

    Article  CAS  PubMed  Google Scholar 

  69. Li AP (2001) Screening for human ADME/Tox drug properties in drug discovery. Drug Discovery Today 6(7):357–366

    Article  CAS  Google Scholar 

  70. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23(1–3):3–25

    Article  CAS  Google Scholar 

  71. Zhao YH, Abraham MH, Le J, Hersey A, Luscombe CN, Beck G, Sherborne B, Cooper I (2002) Rate-limited steps of human oral absorption and QSAR studies. Pharm Res 19(10):1446–1457

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank MESRS (Ministère de l’Enseignement Supérieur et de la Recherche Scientifique, Algeria) and DGRST (Direction Générale de la Recherche Scientifique et Technologique, Algeria) for financial support, as well as the HPC resources of UCI-UFMC (Unité de Calcul Intesif) of the university Fréres Mentouri Constantine 1 for the computational resources used. We also thank Dr. Bensouici Chawki (Centre de recherche en Biotechnologie CRBt, Constantine, Algeria) for his help in the biological evaluation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Houssem Boulebd.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5877 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amine Khodja, I., Boulebd, H. Synthesis, biological evaluation, theoretical investigations, docking study and ADME parameters of some 1,4-bisphenylhydrazone derivatives as potent antioxidant agents and acetylcholinesterase inhibitors. Mol Divers 25, 279–290 (2021). https://doi.org/10.1007/s11030-020-10064-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-020-10064-8

Keywords

Navigation