Skip to main content
Log in

Synthesis of new pyrimidine-containing compounds: 5-(2-(alkylamino)-1,3-dioxo-2,3-dihydro-1H-inden-2-yl)-6-hydroxypyrimidine-2,4(1H,3H)-dione derivatives

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

In this study, the one-pot reaction between primary amines, 1,1-bis-(methylthio)-2-nitroethene, ninhydrin, and barbituric acid as an enolizable C–H-activated compound provides a simple method for the preparation of 5-(2-(alkylamino)-1,3-dioxo-2,3-dihydro-1H-inden-2-yl)-6-hydroxypyrimidine-2,4(1H,3H)-dione derivatives with potential synthetic and pharmacological interest. This reaction shows attractive characteristics, such as substrate availability, good yields, existence of numerous hydrogen-bonding possibilities in product, and its mild conditions in ethanol media.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Scheme 3
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Li B, Webster TJ (2018) Bacteria antibiotic resistance: new challenges and opportunities for implant-associated orthopedic infections. J Orthop Res 36:22–32

    Google Scholar 

  2. Ajani OO, Isaac JT, Owoeye TF, Akinsiku AA (2015) Exploration of the chemistry and biological properties of pyrimidine as a privilege pharmacophore in therapeutics. Int J Biol Chem 9:148–177

    Article  CAS  Google Scholar 

  3. Lagoja IM (2005) Pyrimidine as constituent of natural biologically active compounds. Chem Biodivers 2:1–50

    Article  CAS  PubMed  Google Scholar 

  4. Sharma P, Rane N, Gurram VK (2004) Synthesis and QSAR studies of pyrimido [4,5-d] pyrimidine-2, 5-dione derivatives as potential antimicrobial agents. Bioorg Med Chem Lett 14:4185–4190

    Article  CAS  PubMed  Google Scholar 

  5. Basavaraja HS, Sreenivasa GM, Jayachandran E (2005) Synthesis and biological activity of novel pyrimidino imidazolines. Indian J Heterocycl Chem 15:69

    Google Scholar 

  6. Kaldrikyan MA, Grigoryan LA, Geboyan VA, Arsenyan FG, Stepanyan GM, Garibdzhanyan BT (2000) Synthesis and antitumor activity of some disubstituted 5-(3-methyl-4-alkoxybenzyl) pyrimidines. Pharm Chem J 34:521–524

    Article  CAS  Google Scholar 

  7. Nezu Y, Miyazaki M, Sugiyama K, Kajiwara I (1996) Dimethoxypyrimidines as novel herbicides. Part 1. Synthesis and herbicidal activity of dimethoxyphenoxyphenoxypyrimidines and analogues. Pestic Sci 47:103–113

    Article  CAS  Google Scholar 

  8. Wannachaiyasit S, Chanvorachote P, Nimmannit U (2008) A novel anti-HIV dextrin–zidovudine conjugate improving the pharmacokinetics of zidovudine in rats. AAPS PharmSciTech 9:840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hannah DR, Stevens MF (2003) Structural studies on bioactive compounds. Part 38.1 reactions of 5-aminoimidazole-4-carboxamide: synthesis of imidazo[1,5-a]quinazoline-3-carboxamides. J Chem Res 2003:398–401

    Article  Google Scholar 

  10. Balzarini J, McGuigan C (2002) Bicyclic pyrimidine nucleoside analogues (BCNAs) as highly selective and potent inhibitors of varicella-zoster virus replication. J Antimicrob Chemother 50:5–9

    Article  CAS  PubMed  Google Scholar 

  11. Lee HW, Kim BY, Ahn JB, Kang SK, Lee JH, Shin JS, Yoon SS (2005) Molecular design, synthesis, and hypoglycemic and hypolipidemic activities of novel pyrimidine derivatives having thiazolidinedione. Eur J Med Chem 40:862–874

    Article  CAS  PubMed  Google Scholar 

  12. Gupta AK, Kayath HP, Ajit S, Geeta S, Mishra KC (1994) Anticonvulsant activity of pyrimidine thiols. Indian J Pharmacol 26:227

    CAS  Google Scholar 

  13. Abu-Hashem A, El-Shehry M, Badria F (2010) Design and synthesis of novel thiophenecarbohydrazide, thienopyrazole and thienopyrimidine derivatives as antioxidant and antitumor agents. Acta Pharm 60:311–323

    Article  CAS  PubMed  Google Scholar 

  14. Rahaman SA, Pasad YR, Kumar P, Kumar B (2009) Synthesis and anti-histaminic activity of some novel pyrimidines. Saudi Pharm J 17:255–258

    Article  PubMed  PubMed Central  Google Scholar 

  15. Rodrigues ALS, Rosa JM, Gadotti VM, Goulart EC, Santos MM, Silva AV, Santos ARS (2005) Antidepressant-like and antinociceptive-like actions of 4-(4′-chlorophenyl)-6-(4″-methylphenyl)-2-hydrazinepyrimidine Mannich base in mice. Pharmacol Biochem Behav 82:156–162

    Article  CAS  PubMed  Google Scholar 

  16. Choi Y, Kim H, Park SB (2019) A divergent synthetic pathway for pyrimidine-embedded medium-sized azacycles through an N-quaternizing strategy. Chem Sci 10:569–575

    Article  CAS  PubMed  Google Scholar 

  17. Jain KS, Chitre TS, Miniyar PB, Kathiravan MK, Bendre VS, Veer VS, Shishoo CJ (2006) Biological and medicinal significance of pyrimidines. Curr Sci 90:793

    CAS  Google Scholar 

  18. Brogden RN, Carmine AA, Heel RC, Speight TM, Avery GS (1982) Trimethoprim: a review of its antibacterial activity, pharmacokinetics and therapeutic use in urinary tract infections. Drugs 23:405–430

    Article  CAS  PubMed  Google Scholar 

  19. Millan MJ, Cussac D, Milligan G, Carr C, Audinot V, Gobert A, Nicolas JP (2001) Antiparkinsonian agent piribedil displays antagonist properties at native, rat, and cloned, human α2-adrenoceptors: cellular and functional characterization. J Pharmacol Exp Ther 297:876–887

    CAS  PubMed  Google Scholar 

  20. Moffett BS, Weingarten MM, Galati M, Placencia JL, Rodman EA, Riviello JJ, Kayyal SY (2018) Phenobarbital population pharmacokinetics across the pediatric age spectrum. Epilepsia 59:1327–1333

    Article  CAS  PubMed  Google Scholar 

  21. Ahmed N (2016) Synthetic advances in the indane natural product scaffolds as drug candidates: a review. Stud Nat Prod Chem 51:383–434

    Article  CAS  Google Scholar 

  22. Catto M, Aliano R, Carotti A, Cellamare S, Palluotto F, Purgatorio R, Campagna F (2010) Design, synthesis and biological evaluation of indane-2-arylhydrazinylmethylene-1, 3-diones and indol-2-aryldiazenylmethylene-3-ones as β-amyloid aggregation inhibitors. Eur J Med Chem 45:1359–1366

    Article  CAS  PubMed  Google Scholar 

  23. Prabhakar KR, Veerapur VP, Bansal P, Vipan KP, Reddy KM, Barik A, Unnikrishnan MK (2006) Identification and evaluation of antioxidant, analgesic/anti-inflammatory activity of the most active ninhydrin–phenol adducts synthesized. Bioorg Med Chem 14:7113–7120

    Article  CAS  PubMed  Google Scholar 

  24. Ziarani GM, Lashgari N, Azimian F, Kruger HG, Gholamzadeh P (2015) Ninhydrin in synthesis of heterocyclic compounds. ARKIVOK 6:1–139

    Google Scholar 

  25. ElKalyoubi S, Fayed E (2016) Synthesis and evaluation of antitumour activities of novel fused tri-and tetracyclic uracil derivatives. J Chem Res 40:771–777

    Article  Google Scholar 

  26. Naguib BH, El-Nassan HB, Abdelghany TM (2017) Synthesis of new pyridothienopyrimidinone derivatives as Pim-1 inhibitors. J Enzyme Inhib Med Chem 32:457–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Squarcialupi L, Betti M, Catarzi D, Varano F, Falsini M, Ravani A, Varani K (2017) The role of 5-arylalkylamino-and 5-piperazino-moieties on the 7-aminopyrazolo[4,3-d]pyrimidine core in affecting adenosine A1 and A2A receptor affinity and selectivity profiles. J Enzyme Inhib Med Chem 32:248–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Elkanzi NAA (2013) Synthesis of pyrimidine and pyrimidinthione. Heterocycl Lett 3:247–268

    Google Scholar 

  29. Kidder GW, Dewey VC (1949) The biological activity of substituted pyrimidines. J Biol Chem 178:383–387

    CAS  PubMed  Google Scholar 

  30. Zhang L, Dong J, Xu X, Liu Q (2016) Chemistry of ketene N, S-acetals: an overview. Chem Rev 116:287–322

    Article  CAS  PubMed  Google Scholar 

  31. Mohammadi A, Bayat M, Nasri S (2019) Catalyst-free four-component domino synthetic approach toward versatile multicyclic spirooxindole pyran scaffolds. RSC Adv 9:16525–16533

    Article  CAS  Google Scholar 

  32. Alizadeh A, Zarei A, Rezvanian A (2011) A novel and one-pot multicomponent approach to the synthesis of dihyroindeno[1,2-b]pyrroles and indeno[2′,1′:4,5]pyrrolo[1,2-a]-fused 1, 3-diazaheterocycles. Synthesis 2011:497–501

    Article  Google Scholar 

Download references

Acknowledgements

Financial support of this research from Imam Khomeini International University, Iran, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Bayat.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 13142 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kochia, K., Bayat, M., Nasri, S. et al. Synthesis of new pyrimidine-containing compounds: 5-(2-(alkylamino)-1,3-dioxo-2,3-dihydro-1H-inden-2-yl)-6-hydroxypyrimidine-2,4(1H,3H)-dione derivatives. Mol Divers 24, 1015–1024 (2020). https://doi.org/10.1007/s11030-019-10009-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-019-10009-w

Keywords

Navigation