Skip to main content
Log in

Expedient multicomponent synthesis of a small library of some novel highly substituted pyrido[2,3-d]pyrimidine derivatives mediated and promoted by deep eutectic solvent and in vitro and quantum mechanical study of their antibacterial and antifungal activities

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

A facile and efficient catalyst- and oxidant-free multicomponent synthesis of a small library of highly substituted pyrido[2,3-d]pyrimidine derivatives is reported. The products were obtained within relatively short reaction times in good to excellent yields in the presence of deep eutectic solvents as media and promoters. Simple purification and reusability of the deep eutectic solvent were the other beneficial factors of the reported protocol. All of the synthesized derivatives were thoroughly screened for possible in vitro antibacterial and antifungal effects against twenty-two bacterial and three fungal pathogens. Some of the prepared pyrido[2,3-d]pyrimidine derivatives showed remarkable antibacterial and antifungal activities in comparison with some typical known antibacterial and antifungal agents. Finally, the derivatives possessing bioactivity effects were subjected to quantum chemical computational studies in order to reveal the probable structural and electronic effects governing the spotted bioactivities. It was found that the observed bioactivities could be best devoted to the HOMO–LUMO energy gap and para delocalization index of the corresponding derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Prachayasittikul S, Pingaew R, Worachartcheewan A, Sinthupoom N, Prachayasittikul V, Ruchirawat S, Prachayasittikul V (2017) Roles of pyridine and pyrimidine derivatives as privileged scaffolds in anticancer agents. Mini-Rev Med Chem 17:869–901. https://doi.org/10.2174/1389557516666160923125801

    Article  CAS  PubMed  Google Scholar 

  2. Fry DW, Harvey PJ, Keller PR, Elliott WL, Meade M, Trachet E, Albassam M, Zheng X, Leopold WR, Pryer NK, Toogood PL (2004) Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. Mol Cancer Therapeut 3:1427–1438

    CAS  Google Scholar 

  3. Yu PW, Laird D, Du XN, Wu JM, Won KA, Yamaguchi K, Hsu PP, Qian F, Jaeger CT, Zhang WT, Buhr CA, Shen P, Abulafia W, Chen J, Young J, Plonowski A, Yakes FM, Chu F, Lee M, Bentzien F, Lam ST, Dale S, Matthews DJ, Lamb P, Foster P (2014) Characterization of the activity of the PI3K/mTOR inhibitor XL765 (SAR245409) in tumor models with diverse genetic alterations affecting the PI3K pathway. Mol Cancer Ther 13:1078–1091. https://doi.org/10.1158/1535-7163.MCT-13-0709

    Article  CAS  PubMed  Google Scholar 

  4. Pastor A, Alajarin R, Vaquero JJ, Alvarez-Builla J, Fau de Casa-Juana M, Sunkel C, Priego JG, Fonseca I, Sanz-Aparicio J (1994) Synthesis and structure of new pyrido[2,3-d]pyrimidine derivatives with calcium channel antagonists activity. Tetrahedron 50:8085–8098. https://doi.org/10.1016/S0040-4020(01)85291-1

    Article  CAS  Google Scholar 

  5. Zhang HJ, Wang SB, Wen X, Li JZ, Quan ZS (2016) 5Y Design, synthesis, and evaluation of the anticonvulsant and antidepressant activities of pyrido[2,3-d]pyrimidine derivatives. Med Chem Res 25:1287–1298. https://doi.org/10.1007/s00044-016-1559-1

    Article  CAS  Google Scholar 

  6. Fares M, Abou-Seri SM, Abdel-Aziz HA, Abbas SES, Youssef MM, Eladwy RA (2014) Synthesis and antitumor activity of pyrido[2,3-d]pyrimidine and pyrido[2,3-d][1,2,4]triazolo[4,3-a]pyrimidine derivatives that induce apoptosis through G(1) cell-cycle arrest. Eur J Med Chem 83:155–166. https://doi.org/10.1016/j.ejmech.2014.06.027

    Article  CAS  PubMed  Google Scholar 

  7. Gineinah MM, Nasr MNA, Badr SMI, El-Husseiny WM (2013) Synthesis and antitumor activity of new pyrido[2,3-d]pyrimidine derivatives. Med Chem Res 22:3943–3952. https://doi.org/10.1007/s00044-012-0396-0

    Article  CAS  Google Scholar 

  8. Kumar RN, Dev GJ, Ravikumar N, Swaroop DK, Debanjan B, Bharath G, Narsaiah B, Jain SN, Rao AG (2016) Synthesis of novel triazole/isoxazole functionalized 7-(trifluoromethyl)pyrido[2,3-d]pyrimidine derivatives as promising anticancer and antibacterial agents. Bioorg Med Chem Lett 26:2927–2930. https://doi.org/10.1016/j.bmcl.2016.04.038

    Article  CAS  Google Scholar 

  9. DeGoey DA, Betebenner DA, Grampovnik DJ, Liu DC, Pratt JK, Tufano MD, He WP, Krishnan P, Pilot-Matias TJ, Marsh KC, Molla A, Kempf DJ, Maring CJ (2013) Discovery of pyrido[2,3-d]pyrimidine-based inhibitors of HCV NS5A. Bioorg Med Chem Lett 23:3627–3630. https://doi.org/10.1016/j.bmcl.2013.04.009

    Article  CAS  PubMed  Google Scholar 

  10. Cheung AWH, Banner B, Bose J, Kim K, Li S, Marcopulos N, Orzechowski L, Sergi JA, Thakkar KC, Wang BB, Yun W, Zwingelstein C, Berthel S, Olivier AR (2012) 7-Phenyl-pyrido[2,3-d]pyrimidine-2,4-diamines: novel and highly selective protein tyrosine phosphatase 1B inhibitors. Bioorg Med Chem Lett 22:7518–7522. https://doi.org/10.1016/j.bmcl.2012.10.035

    Article  CAS  PubMed  Google Scholar 

  11. Ibrahim DA, Ismail NSM (2011) Design, synthesis and biological study of novel pyrido[2,3-d]pyrimidine as anti-proliferative CDK2 inhibitors. Eur J Med Chem 46:5825–5832. https://doi.org/10.1016/j.ejmech.2011.09.041

    Article  CAS  PubMed  Google Scholar 

  12. Malagu K, Duggan H, Menear K, Hummersone M, Gomez S, Bailey C, Edwards P, Drzewiecki J, Leroux F, Quesada MJ, Hermann G, Maine S, Molyneaux CA, Le Gall A, Pullen J, Hickson I, Smith L, Maguire S, Martin N, Smith G, Pass M (2009) The discovery and optimisation of pyrido[2,3-d]pyrimidine-2,4-diamines as potent and selective inhibitors of mTOR kinase. Bioorg Med Chem Lett 19:5950–5953. https://doi.org/10.1016/j.bmcl.2009.08.038

    Article  CAS  PubMed  Google Scholar 

  13. Saikia L, Das B, Bharali P, Thakur AJ (2014) A convenient synthesis of novel 5-aryl-pyrido[2,3-d]pyrimidines and screening of their preliminary antibacterial properties. Tetrahedron Lett 55:1796–1801. https://doi.org/10.1016/j.tetlet.2014.01.128

    Article  CAS  Google Scholar 

  14. Abu-Zied KM, Mohamed TK, Al-Duiaj OK, Zaki MEA (2014) A simple approach to fused pyrido[2,3-d]pyrimidines incorporating khellinone and trimethoxyphenyl moieties as new scaffolds for antibacterial and antifungal agents. Heterocycl Commun 20:93–102. https://doi.org/10.1515/hc-2013-0199

    Article  CAS  Google Scholar 

  15. Walker B, Barrett S, Polasky S, Galaz V, Folke C, Engstrom G, Ackerman F, Arrow K, Carpenter S, Chopra K, Daily G, Ehrlich P, Hughes T, Kautsky N, Levin S, Maler KG, Shogren J, Vincent J, Xepapadeas T, de Zeeuw A (2009) Looming global-scale failures and missing institutions. Science 325:1345–1346. https://doi.org/10.1126/science.1175325

    Article  CAS  PubMed  Google Scholar 

  16. Long KS, Vester B (2012) Resistance to linezolid caused by modifications at its binding site on the ribosome. Antimicrob Agents Chemother 56:603–612. https://doi.org/10.1128/AAC.05702-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Biggs-Houck JE, Younai A, Shaw JT (2010) Recent advances in multicomponent reactions for diversity-oriented synthesis. Curr Opin Chem Biol 14:371–382. https://doi.org/10.1016/j.cbpa.2010.03.003

    Article  CAS  PubMed  Google Scholar 

  18. Shaker RM, Abdel-Elrady M, Sadek KU (2016) Synthesis, reactivity, and biological activity of 5-aminouracil and its derivatives. Mol Divers 20:153–183. https://doi.org/10.1007/s11030-015-9595-1

    Article  CAS  PubMed  Google Scholar 

  19. Mossafaii-Rad A, Mokhtary M (2015) Efficient one-pot synthesis of pyrido[2,3-d]pyrimidines catalyzed by nanocrystalline MgO in water. Int Nano Lett 5:109–123. https://doi.org/10.1007/s40089-015-0145-8

    Article  CAS  Google Scholar 

  20. Sabour B, Peyrovi MH, Hajimohammadi M (2015) Al-HMS-20 catalyzed synthesis of pyrano[2,3-d]pyrimidines and pyrido[2,3-d]pyrimidines via three-component reaction. Res Chem Intermed 41:1343–1350. https://doi.org/10.1007/s11164-013-1277-y

    Article  CAS  Google Scholar 

  21. Bhattacharyya P, Paul S, Das (2013) AR Facile synthesis of pyridopyrimidine and coumarin fused pyridine libraries over a Lewis base-surfactant-combined catalyst TEOA in aqueous medium. RSC Adv 3(10):3203–3208. https://doi.org/10.1039/C3RA23254A

    Article  CAS  Google Scholar 

  22. Abdolmohammadi S, Balalaie S (2012) An efficient synthesis of pyrido[2,3-d]pyrimidine derivatives via one-pot three-component reaction in aqueous media. Int J Org Chem 2:7–14. https://doi.org/10.4236/ijoc.2012.21002

    Article  CAS  Google Scholar 

  23. Abdolmohammadi S, Balalaie S (2012) A clean procedure for synthesis of pyrido[d]pyrimidine derivatives under solvent-free conditions catalyzed by ZrO2 nanoparticles. Comb Chem High Throughput Screen 15:395–399. https://doi.org/10.2174/138620712800194486

    Article  CAS  PubMed  Google Scholar 

  24. Kidwai M, Jain A, Bhardwaj S (2012) Magnetic nanoparticles catalyzed synthesis of diverse N-Heterocycles. Mol Divers 16(1):121–128. https://doi.org/10.1007/s11030-011-9336-z

    Article  CAS  PubMed  Google Scholar 

  25. Wang X-S, Zeng Z-S, Shi D-Q, Tu S-J, Wei X-Y, Zong Z-M (2006) Three component one-pot synthesis of pyrido[2,3-d]pyrimidine derivatives catalyzed by KF-alumina. Synth Commun 26:256–259. https://doi.org/10.1081/SCC-200064984

    Article  CAS  Google Scholar 

  26. Geies AA (1999) Synthesis of pyrido[2,3-d]pyrimidines via the reaction of activated nitrites with aminopyrimidines. J Chin Chem Soc (Taipei) 46:69–75. https://doi.org/10.1002/jccs.199900009

    Article  CAS  Google Scholar 

  27. Verma S, Jain SL (2012) Thiourea dioxide in water as a recyclable catalyst for the synthesis of structurally diverse dihydropyrido[2,3-d]pyrimidine-2,4-diones. Tetrahedron Lett 53:2595–2600. https://doi.org/10.1016/j.tetlet.2012.03.037

    Article  CAS  Google Scholar 

  28. Kakade G, Madje B, Ware M, Balaskar R, Shingare MS (2007) Solvent-free one-pot synthesis of polyhydropyridopyrimidine derivatives via Hantzsch condensation using sulphamic acid catalyst. Org Chem Indian J 3:104–106

    CAS  Google Scholar 

  29. Nemati F, Saeedirad R (2013) Nano-Fe3O4 encapsulated-silica particles bearing sulfonic acid groups as a magnetically separable catalyst for green and efficient synthesis of functionalized pyrimido[4,5-b]quinolines and indeno fused pyrido[2,3-d]pyrimidines in water. Chin Chem Lett 24:370–372. https://doi.org/10.1016/j.cclet.2013.02.018

    Article  CAS  Google Scholar 

  30. Abdolmohammadi S, Afsharpour M (2012) Facile one-pot synthesis of pyrido[2,3-d]pyrimidine derivatives over ZrO2 nanoparticles catalyst. Chin Chem Lett 23:257–260. https://doi.org/10.1016/j.cclet.2012.01.001

    Article  CAS  Google Scholar 

  31. Abbott AP, Boothby D, Capper G, Davies DL, Rasheed RK (2004) Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. J Am Chem Soc 126:9142–9147. https://doi.org/10.1021/ja048266j

    Article  CAS  PubMed  Google Scholar 

  32. Alonso DA, Baeza A, Chinchilla R, Guillena G, Pastor IM, Ramón DJ (2016) Deep eutectic solvents: the organic reaction medium of the century. Eur J Org Chem 4:612–632. https://doi.org/10.1002/ejoc.201501197

    Article  CAS  Google Scholar 

  33. Zhang Y, Lü F, Cao X, Zhao J (2014) Deep eutectic solvent supported TEMPO for oxidation of alcohols. RSC Adv 4:40161–40169. https://doi.org/10.1039/C4RA05598E

    Article  CAS  Google Scholar 

  34. Chen Z, Zhou B, Cai H, Zhu W, Zou X (2009) Simple and efficient methods for selective preparation of α-mono or α,α-dichloro ketones and β-ketoesters by using DCDMH. Green Chem 11:275–278. https://doi.org/10.1039/B815169E

    Article  CAS  Google Scholar 

  35. Sunitha S, Kanjilal S, Reddy PS, Prasad RBN (2007) Liquid–liquid biphasic synthesis of long chain wax esters using the Lewis acidic ionic liquid choline chloride·2ZnCl2. Tetrahedron Lett 48:6962–6965. https://doi.org/10.1016/j.tetlet.2007.07.159

    Article  CAS  Google Scholar 

  36. Abbott AP, Bell TJ, Handa S, Stoddart B (2005) O-Acetylation of cellulose and monosaccharides using a zinc based ionic liquid. Green Chem 7:705–707. https://doi.org/10.1039/B511691K

    Article  CAS  Google Scholar 

  37. Azizi N, Gholibeglo E, Babapour M, Ghafuri H, Bolurtchian SM (2012) Deep eutectic solvent promoted highly efficient synthesis of N,Nʹ-diarylamidines and formamides. Compt Rend Chim 15:768–773. https://doi.org/10.1016/j.crci.2012.06.011

    Article  CAS  Google Scholar 

  38. Azizi N, Dezfuli S, Hahsemi MM (2012) Eutectic salt catalyzed environmentally benign and highly efficient biginelli reaction. Sci World J. https://doi.org/10.1100/2012/908702

    Article  Google Scholar 

  39. Keshavarzipour F, Tavakol H (2015) Deep eutectic solvent as a recyclable catalyst for three-component synthesis of beta-amino carbonyls. Catal Lett 145:1062–1066. https://doi.org/10.1007/s10562-014-1471-6

    Article  CAS  Google Scholar 

  40. Disale ST, Kale SR, Kahandal SS, Srinivasan TG, Jayaram RV (2012) Choline chloride·2ZnCl2 ionic liquid: an efficient and reusable catalyst for the solvent free Kabachnik–Fields reaction. Tetrahedron Lett 53:2277–2279. https://doi.org/10.1016/j.tetlet.2012.02.054

    Article  CAS  Google Scholar 

  41. Hu HC, Liu YH, Li BL, Cui ZS, Zhang ZH (2015) Deep eutectic solvent based on choline chloride and malonic acid as an efficient and reusable catalytic system for one-pot synthesis of functionalized pyrroles. RSC Adv 5:7720–7728. https://doi.org/10.1039/C4RA13577F

    Article  CAS  Google Scholar 

  42. Chandam DR, Mulik AG, Patil DR, Deshmukh MB (2015) Oxalic acid dihydrate: proline as a new recyclable designer solvent: a sustainable, green avenue for the synthesis of spirooxindole. Res Chem Intermed 42:1411–1423. https://doi.org/10.1007/s11164-015-2093-3

    Article  CAS  Google Scholar 

  43. Azizi N, Manocheri Z (2012) Eutectic salts promote green synthesis of bis(indolyl) methanes. Res Chem Intermed 38:1495–1500. https://doi.org/10.1007/s11164-011-0479-4

    Article  CAS  Google Scholar 

  44. Azizi N, Dezfooli S, Hashemi MM (2013) Chemoselective synthesis of xanthenes and tetraketones in a choline chloride-based deep eutectic solvent. C R Chim 16:997–1001. https://doi.org/10.1016/j.crci.2013.05.002

    Article  CAS  Google Scholar 

  45. Wang P, Ma F-P, Zhang Z-H (2014) l-(+)-Tartaric acid and choline chloride based deep eutectic solvent: an efficient and reusable medium for synthesis of N-substituted pyrroles via Clauson-Kaas reaction. J Mol Liq 198:259–262. https://doi.org/10.1016/j.molliq.2014.07.015

    Article  CAS  Google Scholar 

  46. Bafti B, Khabazzadeh H (2014) Dimethylurea/citric acid as a highly efficient deep eutectic solvent for the multi-component reactions. J Chem Sci 126:881–887. https://doi.org/10.1007/s12039-014-0624-x

    Article  CAS  Google Scholar 

  47. Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal 6:71–79. https://doi.org/10.1016/j.jpha.2015.11.005

    Article  PubMed  Google Scholar 

  48. Arikan S (2007) Current status of antifungal susceptibility testing methods. Med Mycol 45:569–587. https://doi.org/10.1080/13693780701436794

    Article  CAS  PubMed  Google Scholar 

  49. Gaussian 09, Revision A.02, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich A, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian, Inc., Wallingford CT

  50. Gaussian 09w, NBO Version 3.1, Glendening ED, Reed AE, Carpenter JE, Weinhold F

  51. Hussein EM (2012) Enviro-economic, ultrasound-assisted one-pot, three-component synthesis of pyrido[2,3-d]pyrimidines in aqueous medium. Z Naturforsch B 67:231–237. https://doi.org/10.1515/znb-2012-0309

    Article  CAS  Google Scholar 

  52. Singh S, Saquib M, Singh M, Tiwari J, Tufail F, Singh J, Singh J (2016) A catalyst free, multicomponent-tandem, facile synthesis of pyrido[2,3-d]pyrimidines using glycerol as a recyclable promoting medium. New J Chem 40:63–67. https://doi.org/10.1039/C5NJ01938A

    Article  CAS  Google Scholar 

  53. Zahedifar M, Mohammadi P, Sheibani H (2017) Synthesis and characterization of novel magnetic nanoparticles supported imidazole ion as an efficient catalytic system for the three-component reaction of arylaldehydes, malononitrile and α-hydroxy or α-amino active methylene compounds. Lett Org Chem 14:315–323. https://doi.org/10.2174/1570178614666170329152804

    Article  CAS  Google Scholar 

  54. Upadhyay A, Sharma LK, Singh VK, Singh RKP (2016) An efficient one pot three component synthesis of fused pyridines via electrochemical approach. Tetrahedron Lett 57:5599–5604. https://doi.org/10.1016/j.tetlet.2016.10.111

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Reza Aryan gratefully acknowledges partial financial support of the present study by University of Zabol Research Council through Grant Code: UOZ-GR-9517-40. Scientific consultations from Dr. Khosrow Jadidi and Professor Shahnaz Rostamizadeh are also appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Aryan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 7285 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aryan, R., Beyzaei, H., Nojavan, M. et al. Expedient multicomponent synthesis of a small library of some novel highly substituted pyrido[2,3-d]pyrimidine derivatives mediated and promoted by deep eutectic solvent and in vitro and quantum mechanical study of their antibacterial and antifungal activities. Mol Divers 23, 93–105 (2019). https://doi.org/10.1007/s11030-018-9859-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-018-9859-7

Keywords

Navigation