Advertisement

Molecular Diversity

, Volume 22, Issue 3, pp 709–722 | Cite as

An efficient protocol for the synthesis of highly sensitive indole imines utilizing green chemistry: optimization of reaction conditions

  • Bushra Nisar
  • Syeda Laila Rubab
  • Abdul Rauf Raza
  • Sobia Tariq
  • Ayesha Sultan
  • Muhammad Nawaz Tahir
Original Article
  • 126 Downloads

Abstract

Novel and highly sensitive indole-based imines have been synthesized. Their synthesis has been compared employing a variety of protocols. Ultimately, a convenient, economical and high yielding set of conditions employing green chemistry have been designed for their synthesis.

Keywords

Indole Imines Schiff bases Green chemistry 

Notes

Acknowledgements

The authors acknowledge the Higher Education Commission of Pakistan for two research grants (HEC-20-3873 and SRGP-21-1145), research fellowships to Syeda Laila Rubab (074-2373-Ps4-426), Bushra Nisar (074-1727-Ps4-192) and financial support for spectral analysis (NMR and MS) at Quaid-I-Azam University, Islamabad and/or ICCBS, University of Karachi, Karachi. We are grateful to the University of Sargodha for the provision of basic instruments and XRD facility.

Supplementary material

11030_2018_9826_MOESM1_ESM.pdf (2.3 mb)
Supplementary material 1 (pdf 2392 KB)

References

  1. 1.
    Schiff H (1864) Mitteilungen aus dem universitatslaboratorium in Pisa: eineneue reihe organischer basen. Justus Liebigs Ann Chem 131:118–119.  https://doi.org/10.1002/jlac.18641310113 CrossRefGoogle Scholar
  2. 2.
    Patai S (1970) The chemistry of the carbon–nitrogen double bond. Wiley, New YorkGoogle Scholar
  3. 3.
    Vigato PA, Tamburini S (2004) The challenge of cyclic and acyclic Schiff bases and related derivatives. Coord Chem Rev 248:1717–2128.  https://doi.org/10.1016/j.cct.2003.09.003 CrossRefGoogle Scholar
  4. 4.
    Patai S (1968) The chemistry of the amino group. Wiley, LondonGoogle Scholar
  5. 5.
    Popp FD (1961) Synthesis of potential anticancer agents. II. Some schiff bases. J Org Chem 26:1566–1568.  https://doi.org/10.1021/jo01064a063 CrossRefGoogle Scholar
  6. 6.
    Desai SB, Desai PB, Desai KR (2001) Synthesis of some Schiff bases, thiazolidinones and azetidinones derived from 2,6-diaminobenzo-[1,2-d: 4,5-d\(^{\prime }\)]bisthiazole and their anticancer activities. Heterocycl Commun 7:83–90.  https://doi.org/10.1515/HC.2001.7.1.83 CrossRefGoogle Scholar
  7. 7.
    Przybylski P, Huczynski A, Pyta KB, rzezinski B, Bartl F (2009) Biological properties of Schiff bases and azo derivatives of phenols. Curr Org Chem 13:124–148.  https://doi.org/10.2174/138527209787193774 CrossRefGoogle Scholar
  8. 8.
    Hodnett EM, Mooney PD (1970) Antitumor activities of some schiff bases. J Med Chem 13:786–786.  https://doi.org/10.1021/jm00298a065 CrossRefPubMedGoogle Scholar
  9. 9.
    Geronikaki A, Hadjipavlou-Litina D, Amourgianou M (2003) Novel thiazolyl, thiazolinyl and benzothiazolyl Schiff bases as possible lipoxygenase’s inhibitors and anti-inflammatory agents. II Farmaco 58(7):489–495.  https://doi.org/10.1016/S0014-827X(03)00065-X CrossRefGoogle Scholar
  10. 10.
    Li L, Li Z, Wang K, Liu Y, Li Y, Wang Q (2016) Synthesis and antiviral, insecticidal, and fungicidal activities of gossypol derivatives containing alkylimine, oxime or hydrazine moiety. Bioorg Med Chem 24:474–83.  https://doi.org/10.1016/j.bmc.2015.08.015 CrossRefPubMedGoogle Scholar
  11. 11.
    Venugopala KN, Jayashree VA (2008) Microwave-induced synthesis of Schiff bases of aminothiazolyl bromocoumarins as antibacterials. Indian J Pharm Sci 70:88–91.  https://doi.org/10.4103/0250-474X.40338 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    da Silva CM, da Silva DL, Modolo LV, Alves RB, de Resende MA, Martins CVB, de Fátima A (2011) Schiff bases: a short review of their antimicrobial activities. J Adv Res 2:1–8.  https://doi.org/10.1016/j.jare.2010.05.004 CrossRefGoogle Scholar
  13. 13.
    Abdel Aziz AA, Salem ANM, Sayed MA, Aboaly MM (2012) Synthesis, structural characterization, thermal studies, catalytic efficiency and antimicrobial activity of some M(II) complexes with ONO tridentate Schiff base \(N\)-salicylidene-\(O\)-aminophenol (saphH2). J Mol Struct 1010:130–138.  https://doi.org/10.1016/j.molstruc.2011.11.043 CrossRefGoogle Scholar
  14. 14.
    Saravanan G, Pannerselvam P, Prakash CR (2010) Synthesis and anti-microbial screening of novel Schiff bases of 3-amino-2-methyl quinazolin 4-(3H)-one. J Adv Pharm Technol Res 1:320–325.  https://doi.org/10.4103/0110-5558.72426 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Jarrahpour A, Khalili D, de Clercq E, Salmi C, Brunel JM (2007) Synthesis, antibacterial, antifungal and antiviral activity evaluation of some new bis-Schiff bases of isatin and their derivatives. Molecules 12:1720–1730.  https://doi.org/10.3390/12081720 CrossRefPubMedGoogle Scholar
  16. 16.
    Solak N, Rollas S (2006) Synthesis and antituberculosis activity of 2-(aryl/alkylamino)-5-(4-aminophenyl)-1,3,4-thiadiazoles and their Schiff bases. ARKIVOC xii:173–181.  https://doi.org/10.3998/ark.5550190.0007.c20 Google Scholar
  17. 17.
    Joshi S, Khosla N, Tiwari P (2004) In vitro study of some medicinally important Mannich bases derived from antitubercular agent. Bioorg Med Chem 12:571–576.  https://doi.org/10.1016/j.bmc.2003.11.001 CrossRefPubMedGoogle Scholar
  18. 18.
    Wang H, Yuan H, Li S, Li Z, Jiang M (2016) Synthesis, antimicrobial activity of Schiff base compounds of cinnamaldehyde and aminoacids. Bioorg Med Chem Lett 26:809–813.  https://doi.org/10.1016/j.bmcl.2015.12.089 CrossRefPubMedGoogle Scholar
  19. 19.
    Holla BS, Mahalinga M, Karthikeyan MS, Poojary B, Akberali PM, Kumari NS (2005) Synthesis, characterization and antimicrobial activity of some substituted 1,2,3-triazoles. Eur J Med Chem 40:1173–1178.  https://doi.org/10.1016/j.ejmech.2005.02.013 CrossRefPubMedGoogle Scholar
  20. 20.
    Cates AL, Rasheed SM (1984) Phosphorus GABA analogues as potential prodrugs, pharmaceutical research. Pharm Res 1:271–274.  https://doi.org/10.1023/A:1016350119870 CrossRefPubMedGoogle Scholar
  21. 21.
    Menegola E, Broccia ML, Di Renzo F, Giavini E (2001) Antifungal triazoles induce malformations in vitro. Reprod Toxicol 15:421–427.  https://doi.org/10.1016/j.reprotox.2012.05.088 CrossRefPubMedGoogle Scholar
  22. 22.
    De Souza AO, Galetti FCS, Silva CL, Bicalho B, Parma MM, Fonseca SF, Marsaioli AJ, Trindade ACLB, Freitas-Gil RP, Bezerra FS (2007) Antimycobacterial and cytotoxicity activity of synthetic and natural compounds. Quim Nova 30:1563–1566.  https://doi.org/10.1590/S0100-40422007000700012 Google Scholar
  23. 23.
    Rathelot P, Vanelle P, Gasquet M, Delmas F, Crozet MP, Timon-David P, Maldonado J (1995) Synthesis of novel functionalized 5-nitroisoquinolines and evaluation of in vitro antimalarial activity. Eur J Med Chem 30:503–508.  https://doi.org/10.1016/0223-5234(96)88261-4 CrossRefGoogle Scholar
  24. 24.
    Wang PH, Keck JG, Lien EJ, Lai MMC (1990) Design, synthesis, testing and quantitative structure–activity relationship analysis of substituted salicylaldehyde Schiff bases of 1-amino-3hydroxyguanidine tosylate as new antiviral agents against coronavirus. J Med Chem 33:608–614.  https://doi.org/10.1021/jm00164a023 CrossRefPubMedGoogle Scholar
  25. 25.
    Sriram D, Yogeeswari P, Myneedu NS, Saraswat V (2006) Abacavir prodrugs: microwave-assisted synthesis and their evaluation of anti-HIV activities. Bioorg Med Chem Lett 16:2127–2129.  https://doi.org/10.1016/j.bmcl.2006.01.050 CrossRefPubMedGoogle Scholar
  26. 26.
    Correa WH, Scott JL (2004) Synthesis and characterisation of macrocyclic diamino chiral crown ethers. Molecules 9:513–519.  https://doi.org/10.3390/90600513 CrossRefPubMedGoogle Scholar
  27. 27.
    Correa WH, Papadopoulos S, Radnidge P, Roberts BA, Scott JL (2002) Direct, efficient, solvent-free synthesis of 2-aryl-1,2,3,4-tetrahydroquinazolines. Green Chem 4:245–251.  https://doi.org/10.1039/B202729C CrossRefGoogle Scholar
  28. 28.
    Waldemar A, Rainer T, Veit RS (1998) Synthesis of optically active carbonyl compounds by the catalytic, enantiselective oxidation of silyl enol ethers and ketene acetals with (salen) manganese (III) complexee. J Am Chem Soc 120:708–714.  https://doi.org/10.1021/ja9726668 CrossRefGoogle Scholar
  29. 29.
    Casella L, Ibers JA (1981) Synthesis, characterization, and reactivity of copper(I) and copper(II) complexes of \(N\),\(N^{\prime }\)-bis(3-(2-thenylideneimino)propyl)piperazine (tipp) and \(N\),\(N^{\prime }\)-bis(3-(2-thenylamino)propyl)piperazine (tapp). Crystal structure of [Cu(tapp)] \({{[\text{ ClO }_{4}]}_{2}}\). Inorg Chem 20:2438–2448.  https://doi.org/10.1021/ic50222a016 CrossRefGoogle Scholar
  30. 30.
    Spino C (2003) Chiral enolate equivalents—a review. Org Prep Proced Int 35:1–140.  https://doi.org/10.1080/00304940309355794 CrossRefGoogle Scholar
  31. 31.
    Tanaka K (2003) Solvent-free organic synthesis. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  32. 32.
    Schmeyers J, Toda F, Boy J, Kaupp G (1998) Quantitative solid-solid synthesis of azomethines. J Chem Soc Perkin Trans 1(2):989–994.  https://doi.org/10.1039/A704633B CrossRefGoogle Scholar
  33. 33.
    Sclatani JA, Maranto MT, Sisk TM, Van Arman SA (1996) Terminal alkylation of linear polyamines. J Org Chem 61:3221–3222.  https://doi.org/10.1021/jo952190f CrossRefGoogle Scholar
  34. 34.
    Yang ZH, Wang LX, Zhou ZH, Zhou QL, Tang CC (2001) Synthesis of new chiral Schiff bases and their application in the asymmetric trimethylsilylcyanation of aromatic aldehydes. Tetrahedron Asymmetry 12:1579–1582.  https://doi.org/10.1016/S0957-4166(01)00252-X CrossRefGoogle Scholar
  35. 35.
    Sans D, Perona A, Claramunt RM, Elquero J (2005) Synthesis and spectroscopic properties of Schiff bases derived from 3-hydroxy-4-piridinecarboxaldehyde. Tetrahedron 61:145–154.  https://doi.org/10.1016/j.tet.2004.10.036 CrossRefGoogle Scholar
  36. 36.
    Saggiomo V, Lüning U (2009) On the formation of imines in water—a comparison. Tetrahedron Lett 50:4663–4665.  https://doi.org/10.1016/j.tetlet.2009.05.117 CrossRefGoogle Scholar
  37. 37.
    Moffett RB, Rabjohn N (1963) Organic synthesis. Wiley, New York, pp 605–608Google Scholar
  38. 38.
    Taguchi K, Westheimer FH (1971) Catalysis by molecular sieves in the preparation of ketimines and enamines. J Org Chem 36:1570–1572.  https://doi.org/10.1021/jo00810a033 CrossRefGoogle Scholar
  39. 39.
    Love BE, Ren J (1993) Synthesis of sterically hindered imines. J Org Chem 58:5556–5557.  https://doi.org/10.1021/jo00072a051 CrossRefGoogle Scholar
  40. 40.
    Look GC, Murphy MM, Campbell DA, Gallop MA (1995) Trimethylorthoformate: a mild and effective dehydrating reagent for solution and solid phase imine formation. Tetrahedron Lett 36:2937–2940.  https://doi.org/10.1016/0040-4039(95)00442-F CrossRefGoogle Scholar
  41. 41.
    Cave GWV, Raston CL, Scott JL (2001) Recent advances in solventless organic reactions: towards benign synthesis with remarkable versatility. Chem Commun.  https://doi.org/10.1039/B106677N Google Scholar
  42. 42.
    Imrie C, Kleyi P, Nyamori VO, Gerber TIA, Levendis DC, Look J (2007) Further solvent-free reactions of ferrocenylaldehydes: synthesis of \(1\),\(1^\prime \)-ferrocenyldiimines and ferrocenylacrylonitriles. J Organomet Chem 692:3443–3453.  https://doi.org/10.1016/j.jorganchem.2007.04.011 CrossRefGoogle Scholar
  43. 43.
    Metzger JO (1998) Solvent-free organic syntheses. Angew Chem Int Edit 37:2975–2978.  https://doi.org/10.1002/(SICI)1521-3773(19981116)37:21%3c2975::AID-ANIE2975%3e3.0.CO;2-A
  44. 44.
    Li CJ, Chan TH (1999) Organic syntheses using indium-mediated and catalyzed reactions in aqueous media. Tetrahedron 55:11149–11176.  https://doi.org/10.1016/S0040-4020(99)00641-9 CrossRefGoogle Scholar
  45. 45.
    Loh TP, Huang JM, Goh SH, Vittal JJ (2000) Aldol reaction under solvent-free conditions: highly stereoselective synthesis of 1,3-amino alcohols. Org Lett 2:1291–1294.  https://doi.org/10.1021/ol000042s CrossRefPubMedGoogle Scholar
  46. 46.
    Varma RS, Namboodiri VV (2001) Solvent-free preparation of ionic liquids using a household microwave oven. Pure Appl Chem 73:1309–1313.  https://doi.org/10.1351/pac200173081309 CrossRefGoogle Scholar
  47. 47.
    Tanaka K, Toda F (2000) Solvent-free organic synthesis. Chem Rev 100:1025–1074.  https://doi.org/10.1021/cr940089p CrossRefPubMedGoogle Scholar
  48. 48.
    Tanaka K, Shiraishi R, Toda F (1999) A new method for stereo selective bromination of stilbene and chalcone in a water suspension medium. J Chem Soc Perkin Trans 1:3069–3070.  https://doi.org/10.1039/A906967D CrossRefGoogle Scholar
  49. 49.
    Varma RS (1999) Solvent-free organic syntheses using supported reagents and microwave irradiation. Green Chem 1:43–55.  https://doi.org/10.1039/A808223E CrossRefGoogle Scholar
  50. 50.
    Charde M, Shukla A, Bukhariya V, Mehta J, Chakole RA (2012) Review on: a significance of microwave assist technique in green chemistry. Int J Phytopharm 2:39–50.  https://doi.org/10.7439/ijpp.v2i2.441 Google Scholar
  51. 51.
    Saleem M, Malik AM, Motevalli M, Nunn PB, Ò Brien P (1998) Synthesis and X-ray crystal structures of Schiff bases prepared from salicylaldehyde and the diamino acids l-2-amino-3-methylaminopropanoic acid, dl-2,4-diamino-butanoic acid and dl-2,3-diaminopropanoic acid. Tetrahedron 54:5721–5730.  https://doi.org/10.1016/S0040-4020(98)00260-9 CrossRefGoogle Scholar
  52. 52.
    Ashraf MA, Mahmood K, Wajid A (2011) Synthesis, characterization and biological activity of Schiff bases. Int Conf Chem Chem Process (IPCBEE) 10:1–7Google Scholar
  53. 53.
    Vibhute AY, Mokle SS, Nalwar YS, Vibhute YB, Gurav VM (2009) An efficient and operationally simple synthesis of some new schiff bases using grinding technique. Bull Catal Soc India 8:164–168Google Scholar
  54. 54.
    Ibrahim MN, Hamad KJ, AL-Joroshi SH (2006) Synthesis and characterization of some Schiff bases. Asian J Chem 18:2404–2406Google Scholar
  55. 55.
    James PW, Jonathan MW, Charles GY (2013) Synthesis, characterization and metal ion complexation and extraction capabilities of calix [4] arene Schiff base compounds. Tetrahedron 69:8824–8830.  https://doi.org/10.1016/j.tet.2013.05.120 CrossRefGoogle Scholar
  56. 56.
    Matsugi T, Matsui S, Kojoh S, Takagi Y, Inoue Y, Nakano T, Fujita T, Kashiwa N (2002) New titanium complexes bearing two indolide-imine chelate ligands for the polymerization of ethylene. Macromolecules 35:4880–4887.  https://doi.org/10.1021/ma0122268 CrossRefGoogle Scholar
  57. 57.
    Pandeya SN, Rajput N (2012) Synthesis and anticonvulsant activity of various Mannich and Schiff bases of 1,5-benzodiazepines. Int J Med Chem.  https://doi.org/10.1155/2012/237965 PubMedPubMedCentralGoogle Scholar
  58. 58.
    Murhekar MM, Khadsan RE (2011) Synthesis of Schiff bases by organic free solvent method. J Chem Pharm Res 3:846–849Google Scholar
  59. 59.
    Taj T, Kamble RR, Gireesh T, Badami B (2011) An expeditious green synthesis of Schiff bases and azetidinonesderivatised with 1,2,4-triazoles. J Chem Sci 123:657–666.  https://doi.org/10.1007/s12039-011-0138-8 CrossRefGoogle Scholar
  60. 60.
    Yahyazadeh A, Azimi V (2013) Synthesis of some unsymmetrical new Schiff bases from azo dyes. Eur Chem Bull 2:453–455.  https://doi.org/10.17628/ECB.2013.2.453 Google Scholar
  61. 61.
    Stetin C, de Jeso B, Pommier JC (1982) Imine synthesis in strictly neutral conditions. Synth Commun 12:495–499.  https://doi.org/10.1080/00397918208063686 CrossRefGoogle Scholar
  62. 62.
    Rozkiewicz DI, Ravoo BJ, Reinhoudt DN (2005) Reversible covalent patterning of self-assembled monolayers on gold and silicon oxide surfaces. Langmuir 21:6337–6343.  https://doi.org/10.1021/la050438i CrossRefPubMedGoogle Scholar
  63. 63.
    Wang W, Spingler B, Alberto R (2003) Reactivity of 2-pyridine/aldehyde and 2-acetyl/pyridine coordinated to [\(\text{ Re(CO) }_{{3}}\)] with alcohols and amines: metal mediated Schiff base formation and dimerization. Inorg Chim Acta 355:386–393.  https://doi.org/10.1016/j.ica.2003.08.001 CrossRefGoogle Scholar
  64. 64.
    Naeimi H, Salimi F, Rabiei KJ (2006) Mild and convenient one pot synthesis of Schiff bases in the presence of \(\text{ P }_{2}\text{ O }_{{5}}/\text{ Al }_{2}\text{ O }_{{3}}\) as new catalyst under solvent-free conditions. J Mol Catal A—Chem 260:100–104.  https://doi.org/10.1016/j.molcata.2006.06.055 CrossRefGoogle Scholar
  65. 65.
    Ravishankar L, Patwe SA, Gosarani N, Roy A (2010) Cerium(III)-catalyzed synthesis of schiff bases: a green approach. Synth Commun 40:3177–3180.  https://doi.org/10.1080/00397910903370725 CrossRefGoogle Scholar
  66. 66.
    Gupta N, Naaz R, Nigam GD (2010) Water mediated condensation reaction of aldehydes and amines. Int J Pharma Bio Sci 1:224–226Google Scholar
  67. 67.
    Tania R, van den Ancker, Cave GWV, Rastonc CL (2006) Benign approaches for the synthesis of bis-imine Schiff bases. Green Chem 8:50–53.  https://doi.org/10.1039/b513289d CrossRefGoogle Scholar
  68. 68.
    Tigineh GT, Wen Y-S, Liu L-K (2014) Solvent-free mechanochemical conversion of 3-ethoxy salicylaldehyde and primary aromatic amines to corresponding Schiff-bases. Tetrahedron 71:170–175.  https://doi.org/10.1016/j.tet.2014.10.074 CrossRefGoogle Scholar
  69. 69.
    Devidas SM, Quadri SH, Kamble SA, Syed FM, Vyavhare DY (2011) Novel one-pot synthesis of schiff base compounds derived from different diamine and aromatic aldehyde catalyzed by \(\text{ P }_{2}\text{ O }_{{5}}/\text{ SiO }_{2}\) under free-solvent condition at room temperature. J Chem Pharm Res 3:489–495Google Scholar
  70. 70.
    Naeimi H, Sharghi H, Salimi F, Rabiei K (2008) Facile and efficient method for preparation of Schiff bases catalyzed by \(\text{ P }_{2}\text{ O }_{{5}}/\text{ SiO }_{2}\) under free Solvent conditions. Heteroat Chem 19:43–47.  https://doi.org/10.1002/hc.20383 CrossRefGoogle Scholar
  71. 71.
    Keypour H, Rezaeivala M, Fall Y, Dehghani-Firouzabadia AA (2009) Solvent-free synthesis of some \(\text{ N }_{{4}}\text{ O }_{2}\), \(\text{ N }_{{4}}\text{ S }_{2}\) and \(\text{ N }_{\rm6}\) Schiff base ligands assisted by microwave irradiation. Arkivoc 10:292–301.  https://doi.org/10.3998/ark.5550190.0010.a26 Google Scholar
  72. 72.
    Das S, Das VK, Saikia L, Thakur AJ (2012) Environment-friendly and solvent-free synthesis of symmetrical bis-imines under microwave irradiation. Green Chem Lett Rev 5:457–474.  https://doi.org/10.1080/17518253.2012.667443 CrossRefGoogle Scholar
  73. 73.
    Miglani S, Mishra M, Chawla P (2012) The rapid synthesis of schiff-bases without solvent under microwave irradiation and their antimicrobial activity. Der Pharma Chemica 4:2265–2269Google Scholar
  74. 74.
    Kulkarni P, Bhujbal M, Kad Y, Bhosale D (2012) Ferric sulfate an efficient catalyst for the synthesis of imine under solvent free condition. IJGHC 1:382–387Google Scholar
  75. 75.
    Patil S, Jadhav SD, Shinde SK (2012) CES as an efficient natural catalyst for synthesis of Schiff bases under solvent-free conditions: an innovative green approach. Org Chem Int.  https://doi.org/10.1155/2012/153159 Google Scholar
  76. 76.
    Ali E, Naimi-Jamal MR, Dekamin MG (2013) Highly efficient and rapid synthesis of imines in the presence of nano-ordered MCM-41-\(\text{ SO }_{{3}} \text{ H }\) heterogeneous catalyst. Sci Iran C 20:592–597.  https://doi.org/10.1016/j.scient.2013.02.007 Google Scholar
  77. 77.
    Patil S, Jadhav SD, Deshmukh MB, Patil MB (2012) Natural acid catalyzed synthesis of Schiff under solvent-free condition: as a green approach. Int J Org Chem 2:166–171.  https://doi.org/10.4236/ijoc.2012.22025 CrossRefGoogle Scholar
  78. 78.
    Tania R, van den Ancker, Caveb GWV, Rastonc CL (2006) Benign approaches for the synthesis of bis-imine Schiff bases. Green Chem 8:50–53.  https://doi.org/10.1039/B513289D
  79. 79.
    Cai Y, Peng R, Chu S, Yin J (2010) Synthesis of schiff base derived from \(p\)-aminobenzoic acid by solvent-free reaction using jet milling. Asian J Chem 22:5835–5840Google Scholar
  80. 80.
    Dekamin MG, Azimoshan M, Ramezani L (2013) Chitosan: a highly efficient renewable and recoverable bio-polymer catalyst for the expeditious synthesis of \({\upalpha }\)-amino nitriles and imines under mild conditions. Green Chem 15:811–820.  https://doi.org/10.1039/C3GC36901C CrossRefGoogle Scholar
  81. 81.
    Black DSC, Gatehouse BMKC, Theobald F, Wong LCH (1980) Investigation of the Bischler indole synthesis from 3,5-dimethoxyaniline. Aust J Chem 33:343–350CrossRefGoogle Scholar
  82. 82.
    Black DStC, Kumar N, Wong LCH (1986) Synthesis of 4,6-dimethoxyindoles. Aust J Chem 39:15–20.  https://doi.org/10.1071/CH9860015 CrossRefGoogle Scholar
  83. 83.
    Black DStC, Bowyer MC, Bowyer PK, Ivory AJ, Kim M, Kumar N, McConnell DB, Popiolek M (1994) Synthesis of activated 3-arylindoles. Aust J Chem 47:1741–1750.  https://doi.org/10.1071/CH9941741 CrossRefGoogle Scholar
  84. 84.
    Vilsmeier A, Haack A (1927) Über die Einwirkung von Halogenphosphor auf Alkyl-formanilide. Eine neue Methode zur Darstellung sekundärer und tertiärer \(p\)-Alkylamino-benzaldehyde. Ber Dtsch Che Ges 60:119–122.  https://doi.org/10.1002/cber.19270600118 CrossRefGoogle Scholar
  85. 85.
    Muzammil K, Trivedi P, Khetani DB (2015) Synthesis and characterization of Schiff base \(m\)-nitro aniline and their complexes. Res J Chem Sci 5:52–55Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Bushra Nisar
    • 1
  • Syeda Laila Rubab
    • 2
  • Abdul Rauf Raza
    • 3
  • Sobia Tariq
    • 3
  • Ayesha Sultan
    • 4
  • Muhammad Nawaz Tahir
    • 5
  1. 1.Department of ChemistryThe University of LahoreSargodhaPakistan
  2. 2.Department of ChemistryUniversity of EducationJauharabadPakistan
  3. 3.Ibn e Sina Block, Department of ChemistryUniversity of SargodhaSargodhaPakistan
  4. 4.Department of ChemistryUniversity of EducationFaisalabadPakistan
  5. 5.Ibn ul Haithum Block, Department of PhysicsUniversity of SargodhaSargodhaPakistan

Personalised recommendations