Advertisement

Molecular Diversity

, Volume 10, Issue 3, pp 341–347 | Cite as

Scoring of KDR Kinase Inhibitors: Using Interaction Energy as a Guide for Ranking

  • Georgia B. McGaughey
  • J. Chris Culberson
  • Bradley P. Feuston
  • Constantine Kreatsoulas
  • Vladimir Maiorov
  • Joseph Shpungin
Full–length Paper

Summary

Within a congeneric series of ATP-competitive KDR kinase inhibitors, we determined that the IC50 values, which span four orders of magnitude, correlated best with the calculated ligand-protein interaction energy using the Merck Molecular Force Field (MMFFs(94)). Using the ligand-protein interaction energy as a guide, we outline a workflow to rank order virtual KDR kinase inhibitors prior to synthesis. When structural information of the target is available, the ability to score molecules a priori can be used to rationally select reagents. Our implementation allows one to select thousands of readily available reagents, enumerate compounds in multiple poses and score molecules in the active site of a protein within a few hours. In our experience, virtual library enumeration is best used when a correlation between computed descriptors/properties and IC50 or K i values has been established.

Key words

KDR kinase scoring virtual library enumeration Merck Molecular Force Field 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    (a) Giatromanolaki, A., Sivridis, E., Athanassou, N., Zois, E., Thorpe, P.E., Brekken, R.A., Gatter, K.C., Harrism A.L., Koukourakis, I.M. and Koukourakis, M.I., The angiogenic pathway ‘vascular endothelial growth factor/flk-1 (KDR)-receptor’ in rheumatoid arthritis and osteoarthritis, J. Pathol., 194 (2001) 101–108; (b) Carmeliet, P. and Jain, R., Angiogenesis in cancer and other diseases, Nature, 407 (2000) 249–257; (c) Folkman, J., Angiogenesis in cancer, vascular, rheumatoid and other disease, Nature Medicine, 1 (1995) 27–30.PubMedCrossRefGoogle Scholar
  2. 2.
    (a) Veikkola, T., Karkkainen, M., Claesson-Welsh L. and Alitalo, K., Regulation of Angiogenesis via Vascular Endothelial Growth Factor Receptors, Cancer Res., 60 (2000) 203–212. (b) Thomas, K.A., Vascular Endothelial Growth Factor, a Potent and Selective Angiogenic Agent, J. Biol. Chem., 271 (1996) 603–606.PubMedGoogle Scholar
  3. 3.
    Shalaby, F., Rossant, J., Yamaguchi, T.P., Gertsenstein, M., Wu, X.-F., Breltmanm M.L., Schuh, A.C., Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice, Nature, 376 (1995) 62–66.PubMedCrossRefGoogle Scholar
  4. 4.
    Yang, J.C., Haworth, L., Sherry, R.M., Hwu, P., Schwartzentruber, D.J., Topalian, S.L., Steinberg, S.M., Chen, H.X. and Rosenberg, S.A., A Randomized Trial of Bevacizumab, an Anti—Vascular Endothelial Growth Factor Antibody, for Metastatic Renal Cancer, NEJM, 349 (2003) 427–434.PubMedCrossRefGoogle Scholar
  5. 5.
    Bilodeau, M.T., Fraley, M.E. and Hartman, G.D., Kinase insert domain-containing receptor kinase inhibitors as anti-angiogenic agents, Expert Opin. Investig. Drugs, 11 (2002) 737–745.PubMedCrossRefGoogle Scholar
  6. 6.
    Boyer, S.J., Small Molecule Inhibitors of KDR (VEGFR-2) Kinase: An Overview of Structure Activity Relationships, Curr. Top. Med. Chem., 2 (2002) 973–1000.PubMedCrossRefGoogle Scholar
  7. 7.
    Bilodeau, M.T., Rodman, L.D., McGaughey, G.B., Coll, K.E., Koester, T.J., Hoffman, W.F., Hungate, R.W., Kendall, R.L., McFall, R.C., Rickert, D.W., Rutledge, R.Z. and Thomas, K.A., The discovery of N-(1, 3-thiazol-2-yl)pyridin-2-amines as potent inhibitors of KDR kinase, Bioorg. Med. Chem. Lett., 14 (2004) 2941–4945.PubMedCrossRefGoogle Scholar
  8. 8.
    McTigue, M.A., Wickersham, J.A., Pinko, C., Showalter, R.E., Parast, C.V., Tempczyk-Russel, A., Gehring, M.R., Mroczkowski, B., Kan, C.-C., Villafranca, J.E. and Appelt, K., Crystal Structure of the Kinase Domain of Human Vascular Endothelial Growth Factor Receptor 2: A Key Enzyme in Angiogenesis, Structure, 7 (1999) 319–330.PubMedCrossRefGoogle Scholar
  9. 9.
    Halgren, T.A., MMFF VI. MMFF94s option for energy minimization studies, J. Comp. Chem., 20 (1999) 720–729.CrossRefGoogle Scholar
  10. 10.
    Accelrys v4.6, 9685 Scranton Road, San Diego, CA 92121.Google Scholar
  11. 11.
    (a) Wang, R., Lai, L. and Wang, S., Further development and validation of empirical scoring functions for structure-based binding affinity prediction, J. Comp. Aided. Mol. Des., 16 (2002) 11–26 (b) Wang, R., Lu, Y. and Wang, S., Comparative evaluation of 11 scoring functions for molecular docking, J. Med. Chem., 46 (2003) 2287–2303.CrossRefGoogle Scholar
  12. 12.
    (a) Holloway, M.K., Wai, J.M., Halgren, T.A., Fitzgerald, P.M.D., Vacca, J.P., Dorsey, B.D., Levin, R.B., Thompson, W.J., Chen, L.J., deSolms, S.J., Gaffin, N., Ghosh, A.K., Giuliani, E.A., Graham, S.L., Guare, J.P., Hungate, R.W., Lyle, T.A., Sanders, W.M., Tucker, T.J., Wiggins, M., Wiscount, C.M., Woltersdorf, O.W., Young, S.D., Darke, P.L. and Zugay, J.A., A Priori Prediction of Activity for HIV-1 Protease Inhibitors Employing Energy Minimization in the Active Site, J. Med. Chem., 38 (1995) 305–317. (b) Holloway, M.K. and Wai, J.M., Structure-Based Design of HIV-1 Protease Inhibitors: Correlating Interaction Energy with Activity, ACS Symposium Series Book, Practical Applications of Computer-Aided Molecular Design: Agrochemicals, Materials, and Pharmaceuticals, American Chemical Society (1995). (c) Holloway, M.K., A priori prediction of ligand affinity by energy minimization, Perspectives in Drug Discovery and Design, 9–11 (1998) 63–84.PubMedCrossRefGoogle Scholar
  13. 13.
    Feuston, B.P., Chakravorty, S.J., Conway, J.F., Culberson, J.C., Forbes, J., Kraker, B., Lennon, P.A., Lindsley, C., McGaughey, G.B., Mosley, R., Sheridan, R.P., Valenciano, M. and Kearsley, S.K., Web enabling technology for the design, enumeration, optimization and tracking of compound libraries, Current Topics in Med. Chem., 5 (2005) 773–783.CrossRefGoogle Scholar
  14. 14.
    Mosley, R.T., Culberson, J.C., Kraker, B., Feuston, B.P., Sheridan, R.P., Conway, J.F., Forbes, J.K., Chakravorty, S.J. and Kearsley, S.K., Reagent selector: Using Synthon Analysis to Visualize Reagent Properties and Assist in Combinatorial Library Design, J. Chem. Inf. Mod., 45 (2005) 1439–1446.CrossRefGoogle Scholar
  15. 15.
    Feuston, B.P., Miller, M.D., Culberson, J.C., Nachbar, R.B. and Kearsley, S.K., Comparison of Knowledge-Based and Distance Geometry Approaches for Generation of Molecular Conformations, J. Chem. Inf. Comp. Sci., 41 (2001) 754–763.CrossRefGoogle Scholar
  16. 16.
    (a) Crippen, C.M. and Havel, T.F., Distance Geometry and Molecular Conformation, Bawden, E. (Ed.), Research Studies Press, Wiley, New York, 1988 (b) Kuszewski, J., Nilges, M. and Brunger, A.T., Sampling and efficiency of metric matrix distance geometry: A novel partial metrization algorithm, J. Biomolecular NMR, 2 (1992) 33–56.Google Scholar
  17. 17.
    Gaussian 98, (Revision C.01), Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, Jr., J.A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C. and Pople, J.A., Gaussian, Inc., Wallingford CT,2004.Google Scholar
  18. 18.
    Guo, J., Hurley, M.M., Wright, J.B. and Lushington, G.H., A Docking Score Function for Estimating Ligand-Protein Interactions: Application to Acetylcholinesterase Inhibition, J. Med. Chem., 47 (2004) 5492–5500.PubMedCrossRefGoogle Scholar
  19. 19.
    Wolpert, D.H., The relationship between PAC, the statistical physics framework, the Bayesian framework, and the VC framework, In Wolpert, (Ed.) The Mathematics of Generalization, Addison-Wesley, 1995, pp. 117–214.Google Scholar
  20. 20.
    Duda, R.O., Hart, P.E. and Stork, D.G. (Eds), Pattern Classification. Second edition, John Wiley ' Sons, Inc., 2001, pp. 454–461.Google Scholar
  21. 21.
    Brown, S. and Muchmore, S.W., Prediction of binding affinities for structure-based drug design, Abstracts of Papers, 230th ACS National Meeting, Washington, DC, United States, Aug. 28–Sept. 1, 2005 (2005).Google Scholar
  22. 22.
    Pymol (v. 0.98), DeLano, W., DeLano Scientific LLC, 2005 was used in the creation of Figure 1.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Georgia B. McGaughey
    • 1
  • J. Chris Culberson
    • 1
  • Bradley P. Feuston
    • 1
  • Constantine Kreatsoulas
    • 1
  • Vladimir Maiorov
    • 2
  • Joseph Shpungin
    • 2
  1. 1.Molecular SystemsWest PointUSA
  2. 2.RahwayUSA

Personalised recommendations