Advertisement

Molecular Diversity

, Volume 10, Issue 3, pp 273–281 | Cite as

Interrogating the druggable genome with structural informatics

  • Kevin Hambly
  • Joseph Danzer
  • Steven Muskal
  • Derek A. Debe
Full–length paper

Summary

Structural genomics projects are producing protein structure data at an unprecedented rate. In this paper, we present the Target Informatics Platform (TIP), a novel structural informatics approach for amplifying the rapidly expanding body of experimental protein structure information to enhance the discovery and optimization of small molecule protein modulators on a genomic scale. In TIP, existing experimental structure information is augmented using a homology modeling approach, and binding sites across multiple target families are compared using a clique detection algorithm. We report here a detailed analysis of the structural coverage for the set of druggable human targets, highlighting drug target families where the level of structural knowledge is currently quite high, as well as those areas where structural knowledge is sparse. Furthermore, we demonstrate the utility of TIP's intra- and inter-family binding site similarity analysis using a series of retrospective case studies. Our analysis underscores the utility of a structural informatics infrastructure for extracting drug discovery-relevant information from structural data, aiding researchers in the identification of lead discovery and optimization opportunities as well as potential “off-target” liabilities.

Keywords

structure–based drug design druggable genome protein structures ligand binding sites drug targets structural genomics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Venter, J.C., et al., The sequence of the human genome, Science, 291 (2001) 1304–1351.PubMedCrossRefGoogle Scholar
  2. 2.
    Hopkins, A.L. and Groom, C.R., The druggable genome, Nat. Rev. Drug. Discov., 1 (2002) 727–730.PubMedCrossRefGoogle Scholar
  3. 3.
    Zambrowicz, B.P. and Sands, A.T, Knockouts model the 100 best-selling drugs—will they model the next 100? Nat. Rev. Drug. Discov., 2 (2003) 38–51.PubMedCrossRefGoogle Scholar
  4. 4.
  5. 5.
  6. 6.
    Andreeva, A., Howorth, D., Brenner, S.E., Hubbard, T.J., Chothia, C, Murzin, A.G., SCOP database in 2004: Refinements integrate structure and sequence family data, Nucleic Acids Res., 32 (2004) D226–D229.PubMedCrossRefGoogle Scholar
  7. 7.
    Orengo, C.A., Michie, A.D., Jones, S., Jones, D.T., Swindells, M.B., Thornton, J.M., CATH — a hierarchic classification of protein domain structures, Structure, 5 (1997) 1093–1108.PubMedCrossRefGoogle Scholar
  8. 8.
    Holm, L., Sander, C., The FSSP database of structurally aligned protein fold families, Nucleic Acids Res., 22 (1994) 3600–3609.PubMedGoogle Scholar
  9. 9.
    Buchan, D.W., Rison, S.C., Bray, J.E., Lee, D., Pearl, F., Thornton, J.M., Orengo, C.A., Gene3D: Structural assignments for the biologist and bioinformaticist alike, Nucleic Acids Res., 31 (2003) 469–473.PubMedCrossRefGoogle Scholar
  10. 10.
    Gibrat, J.F., Madej, T., Bryant, S.H., Surprising similarities in structure comparison, Curr. Opin. Struct. Biol., 6 (1996) 377–385.PubMedCrossRefGoogle Scholar
  11. 11.
    Kersey, P.J., Duarte, J., Williams, A., Karavidopoulou, Y., Birney, E., Apweiler, R., The international protein index: An integrated database for proteomics experiments, Proteomics, 4 (2004) 1985–1988.PubMedCrossRefGoogle Scholar
  12. 12.
    Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E., The protein data bank, Nucleic Acids Res., 28 (2000) 235–242.PubMedCrossRefGoogle Scholar
  13. 13.
    Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J., Basic local alignment search tool, J. Mol. Biol., 215 (1990) 403–410.PubMedGoogle Scholar
  14. 14.
    Debe, D.A., Danzer, J.F., Goddard, W.A. 3rd and Poleksic, A., STRUCTFAST: Extreme remote homology detection and alignment using novel dynamic programming and profile-profile scoring, Proteins, submitted.Google Scholar
  15. 15.
    Xie, L., Danzer, J.F. and Debe, D.A., publication in progress.Google Scholar
  16. 16.
    Xie, L., Danzer, J.F. and Debe, D.A., publication in progress.Google Scholar
  17. 17.
    Schmitt, S., Kuhn, D., Klebe, G., A new method to detect related function among proteins independent of sequence and fold homology, J. Mol. Biol., 323 (2002) 387–406.PubMedCrossRefGoogle Scholar
  18. 18.
    Palmer, B., Danzer, J.F., Hambly, K. and Debe, D.A., StructSorter: A continuously maintained pair-wise structure alignment of a comprehensive protein structure database, Bioinformatics, submitted.Google Scholar
  19. 19.
    Mulder, N.J., et al., InterPro: An integrated documentation resource for protein families, domains and functional sites, Brief. Bioinform., 3 (2002) 225–235.PubMedCrossRefGoogle Scholar
  20. 20.
    Lipinski, C.A., Drug-like properties and the causes of poor solubility and poor permeability, J. Pharmacol. Toxicol. Methods, 44 (2000) 235–249.PubMedCrossRefGoogle Scholar
  21. 21.
    Bateman, A., et al., The Pfam protein families database, Nucleic Acids Res, 32 (2004) D138–D141.PubMedCrossRefGoogle Scholar
  22. 22.
    McGinnis, S. and Madden, T.L., BLAST: At the core of a powerful and diverse set of sequence analysis tools, Nucleic Acids Res., 32 (2004) W20–W25.PubMedCrossRefGoogle Scholar
  23. 23.
    Hillisch, A., Pineda, L.F. and Hilgenfeld, R., Utility of homology models in the drug discovery process, Drug Discov. Today, 9 (2004) 659–669.PubMedCrossRefGoogle Scholar
  24. 24.
    Dahl, S.G. and Sylte, I., Molecular modelling of drug targets: The past, the present and the future, Basic Clin. Pharmacol. Toxicol., 96 (2005) 151–155.PubMedCrossRefGoogle Scholar
  25. 25.
    Parang, K. and Sun, G., Design strategies for protein kinase inhibitors, Curr. Opin. Drug Discov. Devel., 7 (2004) 617–629.PubMedGoogle Scholar
  26. 26.
    Dumoulin, M.J., Adam, A., Rouleau, J.L. and Lamontagne, D., Comparison of a vasopeptidase inhibitor with neutral endopeptidase and angiotensin-converting enzyme inhibitors on bradykinin metabolism in the rat coronary bed, J. Cardiovasc. Pharmacol., 37 (2001) 359–366.PubMedCrossRefGoogle Scholar
  27. 27.
    Thunnissen, M.M., Andersson, B., Samuelsson, B., Wong, C.H. and Haeggstrom, J.Z., Crystal structures of leukotriene A4 hydrolase in complex with captopril and two competitive tight-binding inhibitors, Faseb. J., 16 (2002) 1648–1650.PubMedGoogle Scholar
  28. 28.
    Bernardo, A., Ajmone-Cat, M.A., Gasparini, L., Ongini, E. and Minghetti, L., Nuclear receptor peroxisome proliferator-activated receptor-gamma is activated in rat microglial cells by the anti-inflammatory drug HCT1026, a derivative of flurbiprofen, J. Neurochem., 92 (2005) 895–903.PubMedCrossRefGoogle Scholar
  29. 29.
    Tanaka, K., Kubushiro, K., Iwamori, Y., Okairi, Y., Kiguchi, K., Ishiwata, I., Tsukazaki, K., Nozawa, S., Iwamori, M., Estrogen sulfotransferase and sulfatase: Roles in the regulation of estrogen activity in human uterine endometrial carcinomas, Cancer Sci., 94 (2003) 871–876.PubMedCrossRefGoogle Scholar
  30. 30.
    European Medicines Agency; Summary of Product Characteristics — Etoricoxib. http://www.emea.eu.int/pdfs/human/epar/Etoricoxib.pdf.
  31. 31.
    Elger, W., Conception and pharmacodynamic profile of drospirenone, Steroids, 68 (2003) 891–905.PubMedCrossRefGoogle Scholar
  32. 32.
    Mestres, J., Representativity of target families in the Protein Data Bank: Impact for family directed structure-based drug discovery, Drug Discov. Today, 10 (2005) 1629–1637.PubMedCrossRefGoogle Scholar
  33. 33.
    Palczewski, K., et al., Crystal structure of rhodopsin: A G protein-coupled receptor, Science, 289 (2000) 739–745.PubMedCrossRefGoogle Scholar

Copyright information

© SpringerScience + Business Media, Inc. 2006

Authors and Affiliations

  • Kevin Hambly
    • 1
  • Joseph Danzer
    • 1
  • Steven Muskal
    • 1
  • Derek A. Debe
    • 1
  1. 1.Eidogen-Sertanty, Inc.San DiegoUSA

Personalised recommendations