Skip to main content

Advertisement

Log in

Interrogating the druggable genome with structural informatics

  • Full–length paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Summary

Structural genomics projects are producing protein structure data at an unprecedented rate. In this paper, we present the Target Informatics Platform (TIP), a novel structural informatics approach for amplifying the rapidly expanding body of experimental protein structure information to enhance the discovery and optimization of small molecule protein modulators on a genomic scale. In TIP, existing experimental structure information is augmented using a homology modeling approach, and binding sites across multiple target families are compared using a clique detection algorithm. We report here a detailed analysis of the structural coverage for the set of druggable human targets, highlighting drug target families where the level of structural knowledge is currently quite high, as well as those areas where structural knowledge is sparse. Furthermore, we demonstrate the utility of TIP's intra- and inter-family binding site similarity analysis using a series of retrospective case studies. Our analysis underscores the utility of a structural informatics infrastructure for extracting drug discovery-relevant information from structural data, aiding researchers in the identification of lead discovery and optimization opportunities as well as potential “off-target” liabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Venter, J.C., et al., The sequence of the human genome, Science, 291 (2001) 1304–1351.

    Article  PubMed  CAS  Google Scholar 

  2. Hopkins, A.L. and Groom, C.R., The druggable genome, Nat. Rev. Drug. Discov., 1 (2002) 727–730.

    Article  PubMed  CAS  Google Scholar 

  3. Zambrowicz, B.P. and Sands, A.T, Knockouts model the 100 best-selling drugs—will they model the next 100? Nat. Rev. Drug. Discov., 2 (2003) 38–51.

    Article  PubMed  CAS  Google Scholar 

  4. http://www.structuralgenomics.org/

  5. http://www.sgc.utoronto.ca/

  6. Andreeva, A., Howorth, D., Brenner, S.E., Hubbard, T.J., Chothia, C, Murzin, A.G., SCOP database in 2004: Refinements integrate structure and sequence family data, Nucleic Acids Res., 32 (2004) D226–D229.

    Article  PubMed  CAS  Google Scholar 

  7. Orengo, C.A., Michie, A.D., Jones, S., Jones, D.T., Swindells, M.B., Thornton, J.M., CATH — a hierarchic classification of protein domain structures, Structure, 5 (1997) 1093–1108.

    Article  PubMed  CAS  Google Scholar 

  8. Holm, L., Sander, C., The FSSP database of structurally aligned protein fold families, Nucleic Acids Res., 22 (1994) 3600–3609.

    PubMed  CAS  Google Scholar 

  9. Buchan, D.W., Rison, S.C., Bray, J.E., Lee, D., Pearl, F., Thornton, J.M., Orengo, C.A., Gene3D: Structural assignments for the biologist and bioinformaticist alike, Nucleic Acids Res., 31 (2003) 469–473.

    Article  PubMed  CAS  Google Scholar 

  10. Gibrat, J.F., Madej, T., Bryant, S.H., Surprising similarities in structure comparison, Curr. Opin. Struct. Biol., 6 (1996) 377–385.

    Article  PubMed  CAS  Google Scholar 

  11. Kersey, P.J., Duarte, J., Williams, A., Karavidopoulou, Y., Birney, E., Apweiler, R., The international protein index: An integrated database for proteomics experiments, Proteomics, 4 (2004) 1985–1988.

    Article  PubMed  CAS  Google Scholar 

  12. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E., The protein data bank, Nucleic Acids Res., 28 (2000) 235–242.

    Article  PubMed  CAS  Google Scholar 

  13. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J., Basic local alignment search tool, J. Mol. Biol., 215 (1990) 403–410.

    PubMed  CAS  Google Scholar 

  14. Debe, D.A., Danzer, J.F., Goddard, W.A. 3rd and Poleksic, A., STRUCTFAST: Extreme remote homology detection and alignment using novel dynamic programming and profile-profile scoring, Proteins, submitted.

  15. Xie, L., Danzer, J.F. and Debe, D.A., publication in progress.

  16. Xie, L., Danzer, J.F. and Debe, D.A., publication in progress.

  17. Schmitt, S., Kuhn, D., Klebe, G., A new method to detect related function among proteins independent of sequence and fold homology, J. Mol. Biol., 323 (2002) 387–406.

    Article  PubMed  CAS  Google Scholar 

  18. Palmer, B., Danzer, J.F., Hambly, K. and Debe, D.A., StructSorter: A continuously maintained pair-wise structure alignment of a comprehensive protein structure database, Bioinformatics, submitted.

  19. Mulder, N.J., et al., InterPro: An integrated documentation resource for protein families, domains and functional sites, Brief. Bioinform., 3 (2002) 225–235.

    Article  PubMed  CAS  Google Scholar 

  20. Lipinski, C.A., Drug-like properties and the causes of poor solubility and poor permeability, J. Pharmacol. Toxicol. Methods, 44 (2000) 235–249.

    Article  PubMed  CAS  Google Scholar 

  21. Bateman, A., et al., The Pfam protein families database, Nucleic Acids Res, 32 (2004) D138–D141.

    Article  PubMed  CAS  Google Scholar 

  22. McGinnis, S. and Madden, T.L., BLAST: At the core of a powerful and diverse set of sequence analysis tools, Nucleic Acids Res., 32 (2004) W20–W25.

    Article  PubMed  CAS  Google Scholar 

  23. Hillisch, A., Pineda, L.F. and Hilgenfeld, R., Utility of homology models in the drug discovery process, Drug Discov. Today, 9 (2004) 659–669.

    Article  PubMed  CAS  Google Scholar 

  24. Dahl, S.G. and Sylte, I., Molecular modelling of drug targets: The past, the present and the future, Basic Clin. Pharmacol. Toxicol., 96 (2005) 151–155.

    Article  PubMed  CAS  Google Scholar 

  25. Parang, K. and Sun, G., Design strategies for protein kinase inhibitors, Curr. Opin. Drug Discov. Devel., 7 (2004) 617–629.

    PubMed  CAS  Google Scholar 

  26. Dumoulin, M.J., Adam, A., Rouleau, J.L. and Lamontagne, D., Comparison of a vasopeptidase inhibitor with neutral endopeptidase and angiotensin-converting enzyme inhibitors on bradykinin metabolism in the rat coronary bed, J. Cardiovasc. Pharmacol., 37 (2001) 359–366.

    Article  PubMed  CAS  Google Scholar 

  27. Thunnissen, M.M., Andersson, B., Samuelsson, B., Wong, C.H. and Haeggstrom, J.Z., Crystal structures of leukotriene A4 hydrolase in complex with captopril and two competitive tight-binding inhibitors, Faseb. J., 16 (2002) 1648–1650.

    PubMed  CAS  Google Scholar 

  28. Bernardo, A., Ajmone-Cat, M.A., Gasparini, L., Ongini, E. and Minghetti, L., Nuclear receptor peroxisome proliferator-activated receptor-gamma is activated in rat microglial cells by the anti-inflammatory drug HCT1026, a derivative of flurbiprofen, J. Neurochem., 92 (2005) 895–903.

    Article  PubMed  CAS  Google Scholar 

  29. Tanaka, K., Kubushiro, K., Iwamori, Y., Okairi, Y., Kiguchi, K., Ishiwata, I., Tsukazaki, K., Nozawa, S., Iwamori, M., Estrogen sulfotransferase and sulfatase: Roles in the regulation of estrogen activity in human uterine endometrial carcinomas, Cancer Sci., 94 (2003) 871–876.

    Article  PubMed  CAS  Google Scholar 

  30. European Medicines Agency; Summary of Product Characteristics — Etoricoxib. http://www.emea.eu.int/pdfs/human/epar/Etoricoxib.pdf.

  31. Elger, W., Conception and pharmacodynamic profile of drospirenone, Steroids, 68 (2003) 891–905.

    Article  PubMed  CAS  Google Scholar 

  32. Mestres, J., Representativity of target families in the Protein Data Bank: Impact for family directed structure-based drug discovery, Drug Discov. Today, 10 (2005) 1629–1637.

    Article  PubMed  CAS  Google Scholar 

  33. Palczewski, K., et al., Crystal structure of rhodopsin: A G protein-coupled receptor, Science, 289 (2000) 739–745.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Hambly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hambly, K., Danzer, J., Muskal, S. et al. Interrogating the druggable genome with structural informatics. Mol Divers 10, 273–281 (2006). https://doi.org/10.1007/s11030-006-9035-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-006-9035-3

Keywords

Navigation