Skip to main content
Log in

Static Analysis of Properties of a Composite Slab Made from Steel Fibers and a Reinforced Foam Concrete

  • Published:
Mechanics of Composite Materials Aims and scope

The effect of reinforcement configuration (steel fibers and a rebar) on the mechanical performance of a multiribbed composite slab (MCS) has been investigated. Four full-scale multiribbed composite prefabricated slabs with different volume fractions of steel fibers and the same total steel content were manufactured using a steel-fiber-reinforced concrete, foam concrete, and normal concrete. Various technical indicators were detected under the same static load, including the crack resistance, yield load, ultimate load, maximum deflection, destruction pattern, and stress of the steel rebar. The MCS exhibited excellent properties, and it is concluded that such slabs can be recommended for use in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. M. D. Prisco, G. Plizzari, and L. Vandewalle, “Fiber reinforced concrete: new design perspectives,” Mater. Struct., 42, No. 9, 1261-1281(2009).

    Article  Google Scholar 

  2. CECS 38:2004, Brief Introduction of Technical Specification for Fiber Reinforced Concrete Structures, Beijing (2004).

  3. fib Bulletin 65, 2010, Model code 2010 – final draft, ISBN: 978-2-88394-105-2., 1, 300 (2012).

  4. fib Bulletin 66, 2010, Model code 2010 – final draft, ISBN: 978-2-88394-106-9., 2, 370 (2012).

  5. S. Scott, S. H. Hu , and K. S. Jin, “FRP-strengthened RC slabs anchored with FRP anchors,” Eng. Struct., 33, No. 4, 1075-1087 (2011).

    Article  Google Scholar 

  6. L. Sorelli, A. Meda, and G. Plizzari, “Steel fiber concrete slabs on ground: a structural matter,” ACI Struct. J., 103, No. 4, 551-558 (2006).

    Google Scholar 

  7. RILEM TC 162-TDF, “Test and design methods for steel fibre reinforced concrete-r–e design method: final recommendations,” Mater. Struct., 36, 560-567 (2003).

    Article  Google Scholar 

  8. X. Destrée. “Free suspended elevated flat slabs of steel fibre reinforced concrete: full scale tests and design,” 7th Int. RILEM-symposium on fibre reinforced concrete, Chennai, 941–950.

  9. B. Belletti, R. Cerioni, A. Meda, and G. Plizzari, “Design aspects on steel fiber-reinforced concrete pavements,” Civ. Eng., 20, No. 9, 599-607 (2008).

    CAS  Google Scholar 

  10. L. Vandewalle, “RILEM TC162-TDF: Tests and design methods for steel fibre reinforced concrete: Uni-axial Tension Test, Technical Recommendation,” Mater. Struct., 35, No. 5, 262-278 (2001).

    Google Scholar 

  11. L. Vandewalle, “Test and design methods for steel fibre reinforced concrete—σ–ε design method—Final recommendation,” Mater. Struct., 36, No. 8, 560-567 (2003).

    Article  Google Scholar 

  12. P. Pujadas, A. Blanco, S. Cavalaro, and A. Aguado, “Plastic fibres as the only reinforcement for flat suspended slabs: Experimentalinvestigation and numerical simulation,” Constr. Build. Mater., 57, 92-104 (2014).

    Article  Google Scholar 

  13. R. Al-Rousan, M. Issa, and H. Shabila, “Performance of reinforced concrete slabs strengthened with different types and configurations of CFRP,” Composties: Part B, 43, No. 2, 510-521 (2012).

    Article  CAS  Google Scholar 

  14. F. Elgabbas, AA. El-Ghandour, AA. Abdelrahman, and AS. El-Dieb, “Different CFRP strengthening techniques for prestressed hollow core concrete slabs:experimental study and analytical investigation,” Compos. Struct., 92, No. 2, 401-411 (2010).

    Article  Google Scholar 

  15. A. Blanco, P. Pujadas, A. De la Fuente, S. H. P. Cavalaro, and A. Aguado, “Influence of the type of fiber on the structural response and design of FRC slabs,” Struct. Eng. (2016).

  16. L. Ferrara, S. Grunewald, and J. Walraven, “Characterization of the orientation profile of steel fiber reinforced concrete,” Mater. Struct., 44, No. 6, 1093-1111 (2011).

    Article  Google Scholar 

  17. L. Ferrara, N. Ozyurt, and M. D. Prisco, “High mechanical performance of fibre reinforced cementitious composites: the role of “casting-flow induced” fibre orientation,” Mater, Struct., 44, No. 1, 109-128 (2011).

    Article  CAS  Google Scholar 

  18. L. Facconi, F. Minelli, and G. Plizzari, “Steel fiber reinforced self-compacting concrete thin slabs – Experimental study and verification against Model Code 2010 provisions,” Eng. Struct., 122, 226-237 (2016).

    Article  Google Scholar 

  19. Y. S. Tao, “Analysis on energy saving effect of aerated concrete building,” [in chinese], New Build Mater., No. 1, (2005).

  20. Y. J. Liu, B. T. Chen, and Y. Chen, “Literature review on the development and application of autoclaved aerated concrete in China and oversea,” Building Energy Efficiency, 3, (2013).

  21. Z. H. Zhang, F. Liu, and L. J. Li, and Y. Q. Chen, and G. Y. Fan, “The research and application of fiber reinforced concret,” New Build. Mater., No. 6, (2003).

  22. L. Sorelli, A. Meda, and G. Plizzari, “Steel fiber concrete slabs on ground: a structural matte,” ACI Struct. J., 103, No. 4, 551-558 (2006).

    Google Scholar 

  23. Abdul Ahad, “Application of steel fiber in increasing the strength, life-period and reducing overall cost of road construction (by minimizing the thickness of pavement),” World J. Eng. Technol., 3, No. 4, 240-250 (2018).

    Article  Google Scholar 

  24. B. Chiaia, A. Fantilli, and P. Vallini, “Combining fiber-reinforced concrete with traditional reinforcement in tunnel linings,” Eng. Struct., 31, No. 7, 1600-1606 (2009).

    Article  Google Scholar 

  25. S. Abbas, A. M. Soliman, and M. L. Nehdi, “Chlorideion penetration in reinforced concrete and steel fiber-reinforced concrete precast tunnel lining segments,” ACI Mater. J., 111, No. 1-6, 1-10 (2014).

    Google Scholar 

  26. M. D. Prisco, D. Dozio, and B. Belletti, “On the fracture behaviour of thin-walled SFRC roof elements,” Mater. Struct., 46, No. 5, 803-829 (2013).

    Article  Google Scholar 

  27. F. Minelli and G A Plizzari, “On the effectiveness of steel fibers as shear reinforcement,” ACI Struct. J. 110, No. 3, 379-90 (2013).

    Google Scholar 

  28. G. Tiberti, F. Minelli, and G. Plizzari, “Reinforcement optimization of fiber reinforced concrete linings for conventional tunnels,” Composites: Part B, 58, 199-207 (2014).

    Article  CAS  Google Scholar 

  29. J. Michels, D. Waldmann, and S. Maas, and A. Zürbes, “Steel fibers as only reinforcement for flat slab construction – experimental investigation and design,” Constr. Build. Mater., 26, No.1, 145-155 (2012).

  30. J. Michels, R. Christen, and D. Waldmann, “Experimental and numerical investigation on postcracking behavior of steel fiber reinforced concrete,” Eng. Fract. Mech., 98, 326-349 (2013).

    Article  Google Scholar 

  31. N. M. Hawkins, “Progressive collapse of flat-plate structures,” ACI Struct. J., 76, No. 7, 775-808 (1979).

    Google Scholar 

  32. D. Mitchell and W. D. Cook, “Preventing progressive collapse of slab structures,” J. Struct. Eng., 110, No. 7, 1513-1532 (1984).

    Article  Google Scholar 

  33. X. Destrée, “Free suspended elevated flat slabs of steel fibre reinforced concrete: full scale tests and design,” 7th Int. RILEM-symposium on fibre reinforced concrete, Chennai, 941-950.

  34. B. Mobasher, Y. Yao, and C. Soranakom, “Analytical solutions for flexural design of hybrid steel fiber reinforced concrete beams,” Eng. Struct., 100, 164-177 (2015).

    Article  Google Scholar 

  35. P. Pujadas, A. Blanco, and A. D. L. Fuente, and A. Aguado, “Cracking behavior of FRC slabs with traditional reinforcement,” Mater. Struct., 45, No. 5, 707-725 (2012).

  36. J. A. O. Barros, M. Taheri, and H. Salehian, “A model to simulate the moment–rotation and crack width of FRC members reinforced with longitudinal bars,” Eng. Struct., 100, 43-56 (2015).

    Article  Google Scholar 

  37. A. Gholamhoseini, A. Khanlou, G. MacRae, A. Scott, S. Hicks, and R. Leon, “An experimental study on strength and serviceability of reinforced and steel fibre reinforced concrete (SFRC) continuous composite slabs,” Eng. Struct., 114, 171-180 (2016).

    Article  Google Scholar 

  38. A. Meda, F. Minelli, and G. A. Plizzari, “Flexural behaviour of RC beams in fibre reinforced concrete,” Composites: Part B, Eng., 43, No. 8, 2930-2937 (2012).

    Article  CAS  Google Scholar 

  39. F. M. Abas, R. I. Gilbert, S. J. Foster, and M. A. Bradford, “Strength and serviceability of continuous composite slabs with deep trapezoidal steel decking and steel fibre reinforced concrete”. Eng. Struct., 49, No. 2, 866-875 (2013).

    Article  Google Scholar 

  40. F. P. Ackermann, J. Schnell, “Steel fibre reinforced continuous composite slabs,” Proc. of 6th Int. Conf. on Composite Construction, Tabernash, Colorado, USA (2008).

  41. W. Lin, T. Yoda, and N. Taniguchi, “Application of SFRC in steel-concrete composite beams subjected to hogging moment,” J. Constr. Steel Res., 101, 175-183 (2014).

    Article  Google Scholar 

  42. W. Lin, T. Yoda, N. Taniguchi, H. Kasano, and J. He, “Mechanical performance of steel-concrete composite beams subjected to a hogging moment,” J. Struct. Eng., 140, No. 1, 04013031 (2014).

    Article  Google Scholar 

  43. F. R. Mansour, S. Abu Bakar, I. S. Ibrahim, A. K. Marsono, and B. Marabi, “Flexural performance of a precast concrete slab with steel fiber concrete topping,” Constr. Build. Mater., 75, 112-120 (2015).

    Article  Google Scholar 

  44. H C. Mertl, E. Baran, and H. J. Bello, “Flexural behavior of lightly and heavily reinforced steel fiber concrete beams,” Constr. Build. Mater., 98, 185-193 (2015).

    Article  Google Scholar 

  45. M. Mastali, M G. Naghibdehi, M. Naghipour, and S. M. Rabiee, “Experimental assessment of funnctionally graded reinforced concrete(FGRC) slab under drop weight and projectile impacts,” Constr. Build. Mater., 95, 296-311 (2015).

    Article  Google Scholar 

  46. J. Chujie, S. Wei, G. P. Zheng, and Z. Yun, “Experimental study on mechanical performance of steel fiber reinforced concrete,” J. Guangzhou University (Natural Sci. Ed.), 4, (2005).

  47. Z. Guofan Zhao, P. Shaoming, and C. K. Huang, The Structure of Steel Fiber Reinforced Concrete, CAB Press, Beijing (1999).

    Google Scholar 

  48. GB/T 50152-2012. Standard for test method of concrete structures. CAB Press, Beijing (2012).

  49. GB 50010-2010. Code for design of concrete structures. CAB Press, Beijing (2010).

  50. J. M. Gao and W. Sun, “Research on the fatigue characteristic of steel fiber reinforced concrete,” Southeast University, No. 4 (1989).

Download references

Acknowledgements

This work was supported by the Ministry of Housing and Urban-Rural Development of China (Grant No. 2010-k1-26).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Wang.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 55, No. 4, pp. 773-790, July-August, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Liu, H., Xi, C. et al. Static Analysis of Properties of a Composite Slab Made from Steel Fibers and a Reinforced Foam Concrete. Mech Compos Mater 55, 535–546 (2019). https://doi.org/10.1007/s11029-019-09832-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-019-09832-x

Keywords

Navigation