Skip to main content
Log in

Symplectic Method-Based Analysis of Axisymmetric Dynamic Thermal Buckling of Functionally Graded Circular Plates

  • Published:
Mechanics of Composite Materials Aims and scope

The dynamic thermal buckling of circular thin plates made of a functionally graded material is investigated by the symplectic method. Based on the Hamilton principle, canonical equations are established in the symplectic space, and the problems of axisymmetric dynamic thermal buckling of the plates are simplified. The buckling loads and modes of the plates are translated into generalized eigenvalues and eigensolutions, which can be obtained from bifurcation conditions. The effects of gradient properties, parameters of geometric shape, and dynamic thermal loads on the critical temperature increments are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. J. H. Zhang, G. Z. Li, S. R. Li, and Y. B. Ma, “DQM-based thermal stresses analysis of a functionally graded cylindrical shell under thermal shock,” J. Thermal Stresses, 38, No. 9, 959-982 (2015).

    Article  Google Scholar 

  2. B. Diveyev, I. Butyter, and Y. Pelekh, “Dynamic properties of symmetric and asymmetric Beams made of Functionally Graded materials in bending,” Mech. Compos. Mater, 54, No. 1, 111-118 (2018).

    Article  Google Scholar 

  3. J. H. Zhang, S. C. Pan, and L. K. Chen, “Dynamic thermal buckling and postbuckling of clamped–clamped imperfect functionally graded annular plates,” Nonlinear Dyn., 95, 565-577 (2019).

    Article  Google Scholar 

  4. S. R. Li, J. H. Zhang, and Y. G. Zhao, “Thermal post-buckling of functionally graded material Timoshenko beams,”Appl. Math. Mech., 27, No. 6, 803-811 (2006).

    Article  Google Scholar 

  5. S. R. Li, J. H. Zhang, and Y.G. Zhao, “Nonlinear thermo-mechanical post-buckling of circular FGM plate with geometric imperfection,” Thin-Wall. Struct., 45, No.5, 528-536 (2007).

    Article  Google Scholar 

  6. K. S. Anandrao, R. K. Gupta, P. Ramchandran, and G.V. Rao, “Thermal post-buckling analysis of uniform slender functionally graded material beams”, Struct. Eng. and Mech., 36, No. 5, 545-560 (2010).

    Article  Google Scholar 

  7. G. L. She, F. G. Yuan, and Y. R. Ren, “Nonlinear analysis of bending, thermal buckling and post-buckling for functionally graded tubes by using a refined beam theory,” Compos. Struct., 165, 74-82 (2017).

    Article  Google Scholar 

  8. G. L. She, F. G. Yuan, and Y.R. Ren, “Thermal buckling and post-buckling analysis of functionally graded beams based on a general higher-order shear deformation theory,” Appl. Math. Model., 47, 340-357 (2017).

    Article  Google Scholar 

  9. L. S. Ma and T. J. Wang, “Nonlinear bending and post-buckling of a functionally graded circular plate under mechanical and thermal loadings,” Int. J. Solids. Struct., 40, No. 13-14, 3311-3330 (2003).

    Article  Google Scholar 

  10. L. S. Ma and T. J. Wang, “Relationships between the solutions of axisymmetric bending and buckling of functionally graded circular plates based on the third-order plate theory and the classical solutions for isotropic circular plates,” Int. J. Solids. Struct., 41, No. 1, 85-101 (2004).

    Article  Google Scholar 

  11. X. L. Jia, L. L. Ke, X. L. Zhong, Y. Sun, J. Yang, and S. Kitipornchai, “Thermal-mechanical-electrical buckling behavior of functionally graded micro-beams based on modified couple stress theory,” Compos. Struct., 202, 625-634 (2018)

    Article  Google Scholar 

  12. J. Sun, X. Xu, and C.W. Lim, “Buckling of functionally graded cylindrical shells under combined thermal and compressive loads,” J. Thermal Stresses, 37, No. 3, 340-362 (2014).

    Article  Google Scholar 

  13. J. Sun, X. Xu, and C. W. Lim, “Torsional buckling of functionally graded cylindrical shells with temperature-dependent properties,” Int. J. Struct. Stab. Dy., 14, No.1, 1350 048 (2014).

  14. B. Mirzavand, M. R. Eslami, and M. Shakeri, “Dynamic thermal postbuckling analysis of piezoelectric functionally graded cylindrical shells,” J. Thermal Stresses, 33, No. 7, 646-660 (2010).

    Article  Google Scholar 

  15. B. Mirzavand, M. R. Eslami, and J. N. Reddy, “Dynamic thermal postbuckling analysis of shear-deformable piezoelectric FGM cylindrical shells,” J. Thermal Stresses, 36, No. 3, 189-206 (2013).

    Article  Google Scholar 

  16. M. Shariyat, “Dynamic thermal buckling of suddenly heated temperature-dependent FGM cylindrical shells under combined axial compression and external pressure,” Int. J. Solids. Struct., 45, No. 9, 2598-2612 (2008).

    Article  Google Scholar 

  17. M. Shariyat, “Vibration and dynamic buckling control of imperfect hybrid FGM plates with temperature-dependent material properties subjected to thermo-electro-mechanical loading conditions,” Compos. Struct., 88, No. 2, 240-252 (2009).

    Article  Google Scholar 

  18. D. H. Bich, D. Van Dung, V. H. Nam, and N.T. Phuong, “Nonlinear static and dynamic buckling analysis of imperfect eccentrically stiffened functionally graded circular cylindrical thin shells under axial compression,” Int. J. Mech. Sci., 74, 190-200 (2013).

    Article  Google Scholar 

  19. K. Gao, W. Gao, D. Wu, and C. Song, “Nonlinear dynamic buckling of the imperfect orthotropic E-FGM circular cylindrical shells subjected to the longitudinal constant velocity,” Int. J. Mech. Sci., 138, 199-209 (2018).

    Article  Google Scholar 

  20. C. W. Lim and X. S. Xu, “Symplectic elasticity: theory and applications,” Appl. Mech. Rev., 63, No. 5, 1-10 (2010).

    Article  Google Scholar 

  21. X. Xu, H. Chu, and C.W. Lim, “A symplectic Hamiltonian approach for thermal buckling of cylindrical shells,” Int. J. Struct. Stab. Dy., 10, No. 2, 273-286 (2010).

    Article  Google Scholar 

  22. J. H. Zhang and S. R. Li, “Dynamic buckling of FGM truncated conical shells subjected to non-uniform normal impact load,” Compos. Struct., 92, No. 12, 2979-2983 (2010).

    Article  Google Scholar 

  23. J. H. Zhang, S. C. Pan, and S. R. Li, “Dynamic buckling of functionally graded circular plate under thermal shock,” Chinese J. of Applied Mechanics [in Chinese], 32, No. 6, 901-907 (2015).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [grants Nos.11662008 and 11862012] and the abroad exchange funding for young backbone teachers of Lanzhou University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. H. Zhang.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 55, No. 4, pp. 663-676, July-August, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J.H., Liu, X. & Zhao, X. Symplectic Method-Based Analysis of Axisymmetric Dynamic Thermal Buckling of Functionally Graded Circular Plates. Mech Compos Mater 55, 455–466 (2019). https://doi.org/10.1007/s11029-019-09825-w

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-019-09825-w

Keywords

Navigation