Skip to main content
Log in

Numerical Modeling of the Casting Process and Impact Loading of a Steel-Fiber-Reinforced High-Performance Self-Compacting Concrete

  • Published:
Mechanics of Composite Materials Aims and scope

With the rapid development of high-performance self-compacting fiber-reinforced concrete materials, advanced numerical modeling tools have become necessary to design optimum materials and structures. A simulation framework that includes numerical modeling of the flow of a high-performance self-compacting fiber-reinforced concrete mortar during the casting process, calculation of local fiber orientation based on the deformation gradient in the mortar, and impact modeling taking into account the local fiber orientation is proposed. A new method to calculate the probability of fiber orientation distribution by particle tracking and approximation of particle motion using the deformation gradient is proposed. A discrete lattice modeling technique, with a nonlinear strain-rate- and local-fiber-orientation-dependent constitutive law for a numerical impact modeling is proposed. Single- and three-point concrete casting techniques are numerically simulated, and results are compared with experimental measurements, showing a good agreement. The numerical models revealed that fiber orientation and the impact resistance of beams strongly depended on the casting technology of the self-compacting concrete. The numerical model proposed can be used to design efficient concrete casting technologies ensuring the necessary fiber orientation in load-bearing structures..

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. A. Abrishambaf, V. M. C. F. Cunha, and J. A. O. Barros, “A two-phase material approach to model steel fibre reinforced self-compacting concrete in panels,” Eng. Fract. Mech., 162, 1-20 (2016). doi:https://doi.org/10.1016/j.engfracmech.2016.04.043.

    Article  Google Scholar 

  2. E. V. Sarmiento, M. A. N. Hendriks, M. R. Geiker, and T. Kanstad, “Modeling the influence of the fibre structure on the structural behaviour of flowable fibre-reinforced concrete,” Eng. Struct., 124, 186-195 (2016). doi:https://doi.org/10.1016/j. engstruct.2016.05.053

  3. V. M. C. F. Cunha, J. A. O. Barros, and J. M. Sena-Cruz, “An integrated approach for modeling the tensile behaviour of steel fibre reinforced self-compacting concrete,” Cem. Concr. Res., 41, 64-76 (2011). doi: https://doi.org/10.1016/j.cemconres. 2010.09.00

  4. M. Roy, C. Hollmann, and K. Wille, “Influence of volume fraction and orientation of fibers on the pullout behavior of reinforcement bar embedded in ultra high performance concrete,” Constr. Build. Mater., 146, 582-593 (2017). doi:https://doi.org/10.1016/j.conbuildmat.2017.04.08

    Article  Google Scholar 

  5. J. Sliseris, H. Andrä M. Kabel, B. Dix, B. Plinke, O. Wirjadi, et al., “Numerical prediction of the stiffness and strength of medium density fiberboards,” Mech. Mater., 79, 73-84 (2014). doi:https://doi.org/10.1016/j.mechmat.2014.08.005.

    Article  Google Scholar 

  6. J. Sliseris, H. Andrä, M. Kabel, B. Dix, and B. Plinke, “Virtual characterization of MDF fiber network,” Eur. J. Wood Wood Prod., 75, 397-407 (2017). doi:https://doi.org/10.1007/s00107-016-1075-5.

    Article  Google Scholar 

  7. B. Zhou and Y. Uchida, “Influence of flowability, casting time and formwork geometry on fiber orientation and mechanical properties of UHPFRC,” Cem. Concr. Res., 95, 164-177 (2017). doi:https://doi.org/10.1016/j.cemconres.2017.02.017.

    Article  Google Scholar 

  8. R. Deeb, B. L. Karihaloo, and S. Kulasegaram, “Reorientation of short steel fibres during the flow of self-compacting concrete mix and determination of the fibre orientation factor,” Cem. Concr. Res., 56, 112-120 (2014). doi:https://doi.org/10.1016/j. cemconres.2013.10.002.

  9. F. Kolařík, B. Patzák, and L. N. Thrane, “Modeling of fiber orientation in viscous fluid flow with application to self-compacting concrete,” Comput. Struct., 154, 91-100 (2015). doi:https://doi.org/10.1016/j.compstruc.2015.03.007

    Article  Google Scholar 

  10. W. Ren, Z. Yang, R. Sharma, C. Zhang, and P. J. Withers, “Two-dimensional X-ray CT image based meso-scale fracture modeling of concrete,” Eng. Fract. Mech., 133, 24-39 (2015). doi:https://doi.org/10.1016/j.engfracmech.2014.10.016

    Article  Google Scholar 

  11. A. Qsymah, R. Sharma, Z. Yang, L. Margetts, and P. Mummery, “Micro X-ray computed tomography image- based two-scale homogenisation of ultra high performance,” Fibre Reinf. Concrete, 130, 230-240 (2016).

  12. Y. Su, C. Wu, J. Li, Z.-X. Li,and W. Li, “Development of novel ultra-high performance concrete: From material to structure,” Constr. Build. Mater., 135, 517-528 (2017). doi:https://doi.org/10.1016/j.conbuildmat.2016.12.175.

    Article  Google Scholar 

  13. M. Singh, A. H. Sheikh, M. S. Mohamed Ali, P. Visintin, and M. C. Griffith, “Experimental and numerical study of the flexural behaviour of ultra-high performance fibre reinforced concrete beams,” Constr. Build. Mater., 138, 12-25 (2017). doi:https://doi.org/10.1016/j.conbuildmat.2017.02.002.

    Article  Google Scholar 

  14. M. Bruggi, “Generating strut-and-tie patterns for reinforced concrete structures using topology optimization,” Comput. Struc., 87, 1483-1495 (2009). doi:https://doi.org/10.1016/j.compstruc.2009.06.003

    Article  Google Scholar 

  15. B. Sun, X. Wang, and Z. Li,. “Meso-scale image-based modeling of reinforced concrete and adaptive multi-scale analyses on damage evolution in concrete structures,” Comput. Mater. Sci., 110, 39-53 (2015). doi: https://doi.org/10.1016/j.commatsci. 2015.07.050.

  16. G. F. Zhao, “Developing a four-dimensional lattice spring model for mechanical responses of solids,” Comput. Methods Appl. Mech. Eng., 315, 881-895 (2017). doi:https://doi.org/10.1016/j.cma.2016.11.034

    Article  Google Scholar 

  17. J. Šliseris, L. Gaile, and L. Pakrastiņš, “Deformation process numerical analysis of T-stub flanges with pre-loaded bolts,” Procedia Eng., 172, (2017). doi:https://doi.org/10.1016/j.proeng.2017.02.173.

  18. J. Sliseris, “Numerical analysis of reinforced concrete structures with oriented steel fibers and re-bars,” Eng. Fract. Mech., 194, 337-349 (2018). doi:https://doi.org/10.1016/j.engfracmech.2018.03.017.

    Article  Google Scholar 

  19. N. H. T. Nguyen, H. H. Bui, G. D. Nguyen, J. Kodikara, S. Arooran, and P. Jitsangiam, “A thermodynamics-based cohesive model for discrete element modeling of fracture in cemented materials,” Int. J. Solids Struct., 117, 159-176 (2017). doi:https://doi.org/10.1016/j.ijsolstr.2017.03.027

    Article  Google Scholar 

  20. C. Jiang, G. F. Zhao, and N. Khalili, “On crack propagation in brittle material using the distinct lattice spring model,” Int. J. Solids Struct., 118-119, 1339-1351 (2017). doi:https://doi.org/10.1016/j.ijsolstr.2017.04.024

    Article  Google Scholar 

  21. A. Yaghoobi and M. G. Chorzepa, “Fracture analysis of fiber reinforced concrete structures in the micropolar peridynamic analysis framework,” Eng. Fract. Mech., 169, 1-13 (2016). doi:https://doi.org/10.1016/j.engfracmech.2016.11.004

    Google Scholar 

  22. J. Smith, G. Cusatis, D. Pelessone, E. Landis, J. O’Daniel, and J. Baylot, “Discrete modeling of ultra-high-performance concrete with application to projectile penetration,” Int. J. Impact Eng., 65, 13-32 (2014). doi:https://doi.org/10.1016/j.ijimpeng.2013.10.008

    Article  Google Scholar 

  23. N. Banichcuk, “Optimization problems for elastic anisotropic bodies,” Arch. Mech., 3, 347-363 (1981).

    Google Scholar 

  24. P. Pedersen, “On optimal orientation of orthotropic materials,” Struct. Optim., 1, 101-106 (1989).

    Article  Google Scholar 

  25. J. Lellep and J. Majak, “Nonlinear constitutive behavior of orthotropic materials,” Mech. Compos. Mater., 36, No. 4, 261-264 (2000).

    Article  Google Scholar 

  26. J. Lellep and J. Majak, “On optimal orientation of nonlinear elastic orthotropic materials,” Struct. Optim., 14, 116-120 (1997).

    Article  Google Scholar 

  27. M. Rovati and A. Taliercio, “Stationarity of the strain energy density for some classes of anisotropic solids,” 40, 6043-6075 (2003). doi:https://doi.org/10.1016/S0020-7683(03)00371-8

  28. J. Majak and M. Pohlak, “Optimal material orientation of linear and non-linear elastic 3D anisotropic materials,” Meccanica, 45, 671-680 (2010).

    Article  Google Scholar 

  29. J. Majak and M. Pohlak, “Decomposition method for solving optimal material orientation problems,” Compos. Struct., 92, 1839-1845 (2010). doi:https://doi.org/10.1016/j.compstruct.2010.01.015.

    Article  Google Scholar 

  30. D. Jeong and J. Kim, “Conservative Allen–Cahn–Navier–Stokes system for incompressible two-phase fluid flows,” Comput. Fluids, 156, 239-246 (2017). doi:https://doi.org/10.1016/j.compfluid.2017.07.009

    Article  Google Scholar 

  31. Z. Z. Hu, D. Greaves, and A. Raby, “Numerical wave tank study of extreme waves and wave-structure interaction using OpenFoam®,” “Ocean Eng., 126, 329-342 (2016). doi:https://doi.org/10.1016/j.oceaneng.2016.09.017

    Article  Google Scholar 

  32. L. F. Chen, J. Zang, A. J. Hillis, G. C. J. Morgan, and A. R Plummer, “Numerical investigation of wave–structure interaction using OpenFOAM,” Ocean Eng., 88, 91-109 (2014). doi:https://doi.org/10.1016/j.oceaneng.2014.06.003

    Article  Google Scholar 

  33. J. Šliseris, L. Gaile, and L. Pakrastiņš, “Numerical analysis of behaviour of cross laminated timber (CLT) in blast loading,” IOP Conf. Ser. Mater. Sci. Eng., vol. 251 (2017). doi:https://doi.org/10.1088/1757-899X/251/1/012105

  34. J. Sliseris, L. Yan, and B. Kasal, “Numerical modeling of flax short fibre reinforced and flax fibre fabric reinforced polymer composites,” Composites: Part B., 89, 143-154 (2016). doi:https://doi.org/10.1016/j.compositesb.2015.11.038

    Article  Google Scholar 

  35. A. K. Someh and N. Saeki, “Prediction for the stress-strain curve of steel fiber reinforced concrete,” Trans. Japan Concr. Inst., 18, 175-182 (1996).

    Google Scholar 

  36. D. Y. Yoo, N, Banthia, S. T. Kang, and Y. S. Yoon, “Effect of fiber orientation on the rate-dependent flexural behavior of ultra-high-performance fiber-reinforced concrete,” Compos. Struct., 157, 62-70 (2016). doi: https://doi.org/10.1016/j.compstruct. 2016.08.02

  37. D. Y. Yoo, N. Banthia, S. W. Kim, and Y. S. Yoon, “Response of ultra-high-performance fiber-reinforced concrete beams with continuous steel reinforcement subjected to low-velocity impact loading,” Compos. Struct., 126, 233–245 (2015). doi:https://doi.org/10.1016/j.compstruct.2015.02.058

    Article  Google Scholar 

Download references

Acknowledgements

The financial support of European Regional Development Fund project Nr.1.1.1.1/16/A/007 “A New Concept for Sustainable and Nearly Zero-Energy Buildings” is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Sliseris.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 55, No. 1, pp. 43-60, January-February, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sliseris, J., Korjakins, A. Numerical Modeling of the Casting Process and Impact Loading of a Steel-Fiber-Reinforced High-Performance Self-Compacting Concrete. Mech Compos Mater 55, 29–40 (2019). https://doi.org/10.1007/s11029-019-09789-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-019-09789-x

Keywords

Navigation