Skip to main content
Log in

Two-Level Computation of the Elastic Characteristics of Woven Composites

  • Published:
Mechanics of Composite Materials Aims and scope

Homogenization methods in the mechanics of composites make it possible to theoretically determine the characteristics of composite materials on the basis of known properties of their structural components. For woven composites with a complex braid geometry, numerical homogenization methods are most common. In this paper, a numerical method for calculating the effective elastic properties of woven composites is developed using a two-level approach in the homogenization problem. At the microscale level, the averaged properties of yarns are calculated on the basis of known fiber and matrix properties. At the macroscale level, the stress state of the representative volume of a woven composite is analyzed, and parameters of the elasticity tensor of an equivalent homogeneous material are determined. In this case, the effective elastic characteristics of yarns found at the first stage are used, and the rotation of principal directions of the elastic properties of yarns is taken into account. For the woven carbon fiber-reinforced plastic considered, numerical results obtained by the finite-element method within the framework of the two-level approach to the homogenization of composites are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. R. M. Christensen, Mechanis of Composite Materials, John Wiley &КSons, New York–Chichester–Brisbane–Toronto (1979).

  2. A. K. Malmeister, V. P. Tamuzh, and G. A. Teters, Strength of Polymer and Composite Materials [in Russian], Riga, Zinatne (1980).

  3. A. S. Kravchuk, V. P. Maiboroda, and Yu. S. Urzhumtsev, Mechanics of Polymer and Composite Materials [in Russian], M., Nauka (1985).

  4. B. E. Pobedrya Mechanics of Composite Materials [in Russian], M., Izd. Mosk. Univ. (1984).

  5. J. Sendecky, Mechanics of Composite Materials, Vol. 2 [in Russian], M., Mir (1970).

  6. I. Ivanov and A. Tabiei, “Three-dimensional computational micromechanical model for woven fabric composites,” Compos. Struct., 54, No. 4, 489-496 (2001).

    Article  Google Scholar 

  7. R. Udhayaraman and S. Mulay Shantanu, “Multi-scale approach based constitutive modelling of plain woven textile composites,” Mech. Mater., 112, 172-192 (2017).

    Article  Google Scholar 

  8. S. V. Lomov, D. S. Ivanov, I. Verpoest, M. Zako, T. Kurashiki, H. Nakai, and S. Hirosawa, “Meso-FE modelling of textile composites: Roadmap, data flow and algorithms,” Compos. Sci. Technol., 67, 1870-1891 (2007).

    Article  Google Scholar 

  9. S. V. Lomov, I. Verpoest, J. Cichosz, C. Hahn, D. S. Ivanov., and B. Verleye, “Meso-level textile composites simulations: Open data exchange and scripting,” J. Compos. Mater., 48, No. 5, 621-637 (2014).

    Article  Google Scholar 

  10. Barna Szabó, “Unidirectional fiber-reinforced composite laminae: Homogenization and localization,” Computers and Mathematics with Applications, 70, No. 7, 1676-1684 (2015).

    Article  Google Scholar 

  11. L. Gelebart, “Periodic boundary conditions for the numerical homogenization of composite tubes,” Comptes Rendus Mécanique, 339, No 1, 12-19 (2011).

    Article  Google Scholar 

  12. X. Liu, K. Rouf, B. Peng, and W. Yu, “Two-step homogenization of textile composites using mechanics of structure genome,” Compos. Struct., 171, 252-262 (2017).

    Article  Google Scholar 

  13. J. J. Espadas-Escalante, N. P. van Dijk, and P. Isaksson, “A study on the influence of boundary conditions in computational homogenization of periodic structures with application to woven composites,” Compos. Struct., 160, 529-537 (2017).

    Article  Google Scholar 

  14. D. Goyal, J. D. Whitcomb, and X. Tang, “Validation of full 3D and equivalent tape laminate modeling of plasticity induced non-linearity in 2 × 2 braided composites,” Composites: Part A, 39, No. 5, 747-760 (2008).

    Article  Google Scholar 

  15. H. Le Quang, H.-T. Le, D.-H. Nguyen, and Q.-C. He, “Two-scale homogenization of elastic layered composites with interfaces oscillating in two directions,” Mech. Mater., 75, 60-72 (2014).

    Article  Google Scholar 

  16. W. Ogierman and G. Kokot, “Homogenization of inelastic composites with misaligned inclusions by using the optimal pseudo-grain discretization,” Int. J. Solids and Struct., 113-114, 230-240 (2017).

    Article  Google Scholar 

  17. N. V. De Carvalho, S. T. Pinho, and P. Robinson, “Numerical modelling of woven composites: Biaxial loading,” Composites: Part A, 43, 1326-1337 (2012).

    Article  Google Scholar 

  18. S. Daryazadeh, G.. Lvov, and M. Tajdari, “A new numerical procedure for determination of effective elastic constants in unidirectional composite plates,” J. Solid Mech., 8, No. 1, 104-115 (2016).

    Google Scholar 

  19. E. J. Barbero, Finite Element Analysis of Composite Materials Using ANSYS, 2nd ed., CRC Press (2013).

  20. A. I. Lurye, Elasticity Theory [in Russian], M., Nauka (1970).

  21. V. V. Eliseev, Mechanics of Elastic Bodies [in Russian], SPb, Izd. SPb GTU (1999).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. I. Lvov.

Additional information

Translated from Mekhanika Kompozitnykh Materialov, Vol. 54, No. 5, pp. 845-864, September-October, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lvov, G.I., Kostromitskaya, O.A. Two-Level Computation of the Elastic Characteristics of Woven Composites. Mech Compos Mater 54, 577–590 (2018). https://doi.org/10.1007/s11029-018-9766-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-018-9766-0

Keywords

Navigation