Skip to main content
Log in

Fatigue Failure Criterion of Laminated Composites Under a Complex Stress-Strain State

  • Published:
Mechanics of Composite Materials Aims and scope

A brief review of some polynomial criteria commonly used to predict the fatigue failure of laminated composites under complex stress-strain states is presented. It is noted that the main disadvantages of such criteria are their considerable complexity and laboriousness. In order to obtain estimates of the fatigue life, acceptable from the viewpoint of accuracy and laboriousness, for laminated composites under such stress-strain states, a special criterion of fatigue failure according to the “minimum fatigue life” is proposed. A calculation example confirming the efficiency of the criterion suggested is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. M. Shokrieh and L. B. Lessard, “Fatigue under multiaxial stress systems,” in: B. Harris (ed.), Fatigue in Composites, Woodhead Publ. Ltd & CRC Press LLC (2003), pp. 63-114.

  2. Z. Hashin, “Fatigue failure criteria for unidirectional fiber composites,” J. Appl. Mech., 48, 846-852 (1981).

    Article  Google Scholar 

  3. M. M. Shokrieh and L. B. Lessard, “Multiaxial fatigue behavior of unidirectional plies based on uniaxial fatigue experiments. I. Modelling,” Int. J. Fatigue, 19 (3), 201-207 (1997).

    Article  Google Scholar 

  4. M. M. Shokrieh and L. B. Lessard, “Multiaxial fatigue behavior of unidirectional plies based on uniaxial fatigue experiments. II. Experimental evaluation,” Int. J. Fatigue, 19 (3), 209-217 (1997).

    Article  Google Scholar 

  5. S. W. Tsai, “Strength theories of filamentary structures,” in: R. T. Schwartz and H. S. Schwartz (eds.), Fundamental Aspects of Fiber Reinforced Plastic Composites (1968), pp. 3-11.

  6. D. F. Sims and V. H. Brogdon, “Fatigue behavior of composites under different loading modes,” in: Fatigue of Filamentary Materials, ASTM STP 636 (1977), pp. 185-205.

  7. T. P. Philippidis and A. P. Vassilopoulos, “Fatigue strength prediction under multiaxial stress,” J. Compos. Mater., 33 (17), 1578-1599.

  8. L. P. Kollar and G. S. Springer, Mechanics of Composite Structures, Cambridge University Press (2003).

  9. ASTM Standards: D 3479/D 3479M Standard Test Method for Tension-Tension Fatigue of Polymer Matrix Composite Materials. 2002. www.astm.org

  10. ASTM Standards: E 739-91 Standard Practice for Statistical Analysis of Linear or Linearized Stress-Life (S-N) and Strain-Life (εN ) Fatigue Data. 2004. www.astm.org

  11. ASTM Standards: D 5379/D 5379M Standard Test Method for Shear Properties of Composite Materials by the VNotched Beam Method. 2012. www.astm.org

  12. J. F. Mandell, “Fatigue behaviour of fibre-resin composites,” in: G. Pritchard (ed.), Developments in Reinforced Plastics 2, Appl. Sci. Publ., London (1982), pp. 67-108.

    Google Scholar 

  13. J. Tomblin and W. Seneviratne, Determining the Fatigue Life of Composite Aircraft Structures Using Life and Load-Enhancement Factors. Report DOT/FAA/AR-10/6, June (2011).

  14. G. D. Sims, “Fatigue test methods, problems and standards,” in: B. Harris (ed.), Fatigue in Composites, Woodhead Publ. Ltd and CRC Press LLC (2003).

  15. Yu. N. Rabotnov, A. A. Tupolev, V. F. Kut’inov, V. P. Kogaev, A. V. Berezin, and V. V. Sulimenkov, “Use of carbonfiber-reinforced plastics in aircraft construction,” Mech. Compos. Mater., No. 4, 455-465 (1981).

  16. Yu. I. Dudar’kov, M. V. Limonin, and E. A. Levchenko, “Free-edge effect in layered composites,” Aviats. Prom., No. 4, 48-53 (2012).

  17. Yu. I. Dudar’kov, E. A. Levchenko, and M. V. Limonin, “Influence of the structure of a package on the edge effects in layered composites,” Kosmonavt., No. 3 (9), 25-30 (2014).

  18. N. Pagano (ed.), Interlaminar Effects in Composite Materials [Russian translation], Mir, Moscow (1993).

  19. A. Baker, S. Dutton, and D. Kelly, Composite Materials for Aircraft Structures, Virginia (2004).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Strizhius.

Additional information

Translated from Mekhanika Kompozitnykh Materialov, Vol. 52, No. 3, pp. 521-534 , May-June, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strizhius, V. Fatigue Failure Criterion of Laminated Composites Under a Complex Stress-Strain State. Mech Compos Mater 52, 369–378 (2016). https://doi.org/10.1007/s11029-016-9589-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-016-9589-9

Keywords

Navigation