Advertisement

Mechanics of Composite Materials

, Volume 52, Issue 3, pp 369–378 | Cite as

Fatigue Failure Criterion of Laminated Composites Under a Complex Stress-Strain State

  • V. Strizhius
Article

A brief review of some polynomial criteria commonly used to predict the fatigue failure of laminated composites under complex stress-strain states is presented. It is noted that the main disadvantages of such criteria are their considerable complexity and laboriousness. In order to obtain estimates of the fatigue life, acceptable from the viewpoint of accuracy and laboriousness, for laminated composites under such stress-strain states, a special criterion of fatigue failure according to the “minimum fatigue life” is proposed. A calculation example confirming the efficiency of the criterion suggested is presented.

Keywords

layered polymer composites complex stress-strain state fatigue life residual strength 

References

  1. 1.
    M. M. Shokrieh and L. B. Lessard, “Fatigue under multiaxial stress systems,” in: B. Harris (ed.), Fatigue in Composites, Woodhead Publ. Ltd & CRC Press LLC (2003), pp. 63-114.Google Scholar
  2. 2.
    Z. Hashin, “Fatigue failure criteria for unidirectional fiber composites,” J. Appl. Mech., 48, 846-852 (1981).CrossRefGoogle Scholar
  3. 3.
    M. M. Shokrieh and L. B. Lessard, “Multiaxial fatigue behavior of unidirectional plies based on uniaxial fatigue experiments. I. Modelling,” Int. J. Fatigue, 19 (3), 201-207 (1997).CrossRefGoogle Scholar
  4. 4.
    M. M. Shokrieh and L. B. Lessard, “Multiaxial fatigue behavior of unidirectional plies based on uniaxial fatigue experiments. II. Experimental evaluation,” Int. J. Fatigue, 19 (3), 209-217 (1997).CrossRefGoogle Scholar
  5. 5.
    S. W. Tsai, “Strength theories of filamentary structures,” in: R. T. Schwartz and H. S. Schwartz (eds.), Fundamental Aspects of Fiber Reinforced Plastic Composites (1968), pp. 3-11.Google Scholar
  6. 6.
    D. F. Sims and V. H. Brogdon, “Fatigue behavior of composites under different loading modes,” in: Fatigue of Filamentary Materials, ASTM STP 636 (1977), pp. 185-205.Google Scholar
  7. 7.
    T. P. Philippidis and A. P. Vassilopoulos, “Fatigue strength prediction under multiaxial stress,” J. Compos. Mater., 33 (17), 1578-1599.Google Scholar
  8. 8.
    L. P. Kollar and G. S. Springer, Mechanics of Composite Structures, Cambridge University Press (2003).Google Scholar
  9. 9.
    ASTM Standards: D 3479/D 3479M Standard Test Method for Tension-Tension Fatigue of Polymer Matrix Composite Materials. 2002. www.astm.org
  10. 10.
    ASTM Standards: E 739-91 Standard Practice for Statistical Analysis of Linear or Linearized Stress-Life (S-N) and Strain-Life (εN ) Fatigue Data. 2004. www.astm.org
  11. 11.
    ASTM Standards: D 5379/D 5379M Standard Test Method for Shear Properties of Composite Materials by the VNotched Beam Method. 2012. www.astm.org
  12. 12.
    J. F. Mandell, “Fatigue behaviour of fibre-resin composites,” in: G. Pritchard (ed.), Developments in Reinforced Plastics 2, Appl. Sci. Publ., London (1982), pp. 67-108.Google Scholar
  13. 13.
    J. Tomblin and W. Seneviratne, Determining the Fatigue Life of Composite Aircraft Structures Using Life and Load-Enhancement Factors. Report DOT/FAA/AR-10/6, June (2011).Google Scholar
  14. 14.
    G. D. Sims, “Fatigue test methods, problems and standards,” in: B. Harris (ed.), Fatigue in Composites, Woodhead Publ. Ltd and CRC Press LLC (2003).Google Scholar
  15. 15.
    Yu. N. Rabotnov, A. A. Tupolev, V. F. Kut’inov, V. P. Kogaev, A. V. Berezin, and V. V. Sulimenkov, “Use of carbonfiber-reinforced plastics in aircraft construction,” Mech. Compos. Mater., No. 4, 455-465 (1981).Google Scholar
  16. 16.
    Yu. I. Dudar’kov, M. V. Limonin, and E. A. Levchenko, “Free-edge effect in layered composites,” Aviats. Prom., No. 4, 48-53 (2012).Google Scholar
  17. 17.
    Yu. I. Dudar’kov, E. A. Levchenko, and M. V. Limonin, “Influence of the structure of a package on the edge effects in layered composites,” Kosmonavt., No. 3 (9), 25-30 (2014).Google Scholar
  18. 18.
    N. Pagano (ed.), Interlaminar Effects in Composite Materials [Russian translation], Mir, Moscow (1993).Google Scholar
  19. 19.
    A. Baker, S. Dutton, and D. Kelly, Composite Materials for Aircraft Structures, Virginia (2004).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Joint-Stock Company “Aerocomposite,”MoscowRussia

Personalised recommendations