Mechanics of Composite Materials

, Volume 42, Issue 6, pp 491–506 | Cite as

Thermoelastoplastic deformation of complexly reinforced shells

  • Yu. V. Nemirovskii
  • A. P. Yankovskii


The problem on the elastoplastic deformation of reinforced shells of variable thickness under thermal and force loadings is formulated. A qualitative analysis of the problem is carried out and its linearization is indicated. Calculations of isotropic and metal composite cylindrical shells have shown that the load-carrying capacity of shell structures under elastoplastic deformations is several times (sometimes by an order of magnitude) higher than under purely elastic ones; the heating of shells with certain patterns of reinforcement sharply reduces their resistance to elastic deformations, but only slightly affects their resistance to elastoplastic ones; not always does the reinforcement in the directions of principal stresses and strains provide the greatest load-carrying capacity of a shell; there are reinforcement schemes that ensure practically the same resistance of shells at different types of their fastening.


composites metal composites reinforcement shells thermoelastic deformation thermoelastoplastic deformation load-carrying capacity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. A. Ambartsumyan, General Theory of Anisotropic Plates [in Russian], Nauka, Moscow (1974).Google Scholar
  2. 2.
    A. K. Malmeister, V. P. Tamuzh, and G. A. Teters, Strength of Polymer and Composite Materials [in Russian], Zinatne, Riga (1980).Google Scholar
  3. 3.
    Yu. V. Nemirovskii and B. S. Reznikov, Strength of Structural Elements of Composite Materials [in Russian], Nauka, Novosibirsk (1986).Google Scholar
  4. 4.
    Ya. M. Grigorenko, Isotropic and Anisotropic Layered Shells of Revolution of Variable Stiffness [in Russian], Naukova Dumka, Kiev (1973).Google Scholar
  5. 5.
    M. I. Erkhov, Theory of Perfectly Plastic Bodies and Structures [in Russian], Nauka, Moscow (1978).Google Scholar
  6. 6.
    Composite Materials. Handbook [in Russian], Naukova Dumka, Kiev (1985).Google Scholar
  7. 7.
    L. A. Agalovyan, Asymptotic Theory of Anisotropic Plates and Shells [in Russian], Nauka, Moscow (1997).Google Scholar
  8. 8.
    Yu. V. Nemirovskii and A. P. Yankovskii, “On the limits of applicability of some theories for calculating bent reinforced plates,” Nauch. Vestn. Novosib. Gos. Tekh. Univ., 18, No. 3, 91–113 (2004).Google Scholar
  9. 9.
    N. N. Malinin, Applied Theory of Plasticity and Creep [in Russian], Mashinostroenie, Moscow (1968).Google Scholar
  10. 10.
    Yu. V. Nemirovskii and A. P. Yankovskii, “Thermoelastoplastic bending of complexly reinforced plates,” Mech. Compos. Mater., 41, No. 6, 477–496 (2005).CrossRefGoogle Scholar
  11. 11.
    Yu. V. Nemirovskii and A. P. Yankovskii, “On some features of the equations of shells reinforced with fibers of constant cross section,” Mekh. Kompozits. Mater. Konstr., 3, No. 2, 20–40 (1997).Google Scholar
  12. 12.
    E. Kamke, Differentialgleichungen. Losungsmethoden und Losungen. Bd. II. Partielle Differentialgleichungen erster Ordnung für eine gesuchte Funktion, Leipzig (1959).Google Scholar
  13. 13.
    Yu. Nemirovskii and A. P. Yankovskii, “Thermal conductivity of fibrous shells,” Teplofiz. Aeromekh., 5, No. 2, 215–235 (1998).Google Scholar
  14. 14.
    N. N. Kalitkin, Numerical Methods [in Russian], Nauka, Moscow (1978).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Yu. V. Nemirovskii
    • 1
  • A. P. Yankovskii
    • 1
  1. 1.Institute of Theoretical and Applied MechanicsSiberian Branch of the Russian Academy of SciencesNovosibirskRussia

Personalised recommendations