Abood SA, Lee JSH, Burivalova Z, Garcia-Ulloa J, Koh LP (2015) Relative contributions of the logging, fiber, oil palm, and mining industries to forest loss in Indonesia. Conserv Lett 8(1):58–67
Article
Google Scholar
Agung P, Galudra G, van Noordwijk M, Maryani R (2014) Reform or reversal: the impact of REDD+ readiness on forest governance in Indonesia. Clim Pol 14(6):748–768
Article
Google Scholar
Agus F, Hairiah K, Mulyani A (2011) Measuring carbon stock in peat soils: practical guidelines. World agroforestry Centre-ICRAF Southeast Asia and Indonesian Centre for Agricultural Land Resources Research and Development, Bogor
Badan Pusat Statistik (Centre of Statistic) Kabupaten Tanjung Jabung Barat (2014) Tanjung Jabung Barat in numbers year 2014 (In Indonesian) Statistics Bureau in cooperation with Regency Development Planning Agency Tanjung Jabung Barat Jambi.
Benscoter BW, Wieder RK, Vitt DH (2005) Linking microtopography with post-fire succession in bogs. J Veg Sci 16(4):453–460. https://doi.org/10.1111/j.1654-1103.2005.tb02385.x
Article
Google Scholar
Benscoter BW, Greenacre D, Turetsky MR (2015) Wildfire as a key determinant of peatland microtopography. Can J For Res 45(8):1132–1136. https://doi.org/10.1139/cjfr-2015-0028
Article
Google Scholar
Busch J, Ferretti-Gallon K, Engelmann J, Wright M, Austin KG, Stolle F, Turubanova S, Potapov PV, Margono B, Hansen MC, Baccini A (2015) Reductions in emissions from deforestation from Indonesia’s moratorium on new oil palm, timber, and logging concessions. Proc Natl Acad Sci 112(5):1328–1333
Article
Google Scholar
Carlson KM, Goodman LK, May-Tobin CC (2015) Modeling relationships between water table depth and peat soil carbon loss in Southeast Asian plantations. Environ Res Lett 10:074006. https://doi.org/10.1088/1748-9326/10/7/074006.
Article
Google Scholar
Chimner RA, Ewel KC (2005) A tropical freshwater wetland: II production, decomposition, and peat formation. Wetl Ecol Manag 13:671–684
Article
Google Scholar
Couwenberg J, Hooijer A (2013) Towards robust subsidence-based soil carbon emission factors for peat soils in South-East Asia, with special reference to oil palm plantations. Mires Peat 12(1):1–13
Google Scholar
Crill PM, Martikainen PJ, Nykanen H, Silvola J (1994) Temperature and N fertilization effects on methane oxidation in a drained peatland soil. Soil Biol Biochem 26:1331–1339
Article
Google Scholar
Di Gregorio M, Nurrochmat DR, Paavola J, Sari IM, Fatorelli L, Pramova E, Locatelli B, Brockhaus M, Kusumadewi SD (2017) Climate policy integration in the land use sector: mitigation, adaptation and sustainable development linkages. Environ Sci Pol 67:35–43
Article
Google Scholar
DID and LAWOO (1996) Western Johore Integrated Agricultural Development Project: peat soil management study. Department of Irrigation and Drainage (DID), Kuala Lumpur, Malaysia and Land and Water Research Group (LAWOO) Wageningen, The Netherlands.
Evers S, Yule CM, Padfield R, O'reilly P, Varkkey H (2017) Keep wetlands wet: the myth of sustainable development of tropical peatlands—implications for policies and management. Glob Chang Biol 23(2):534–549
Article
Google Scholar
Farmer J, Matthews R, Smith P, Langan C, Hergoualc’h K, Vercho L, Smith JU (2014) Comparison of methods for quantifying soil carbon in tropical peats. Geoderma 214:177–183
Article
Google Scholar
Frolking S, Roulet NT, Tuittila E, Bubier JL, Quillet A, Talbot J, Richard PJH (2010) A new model of Holocene peatland net primary production, decomposition, water balance, and peat accumulation. Earth Syst Dynam 1:1–21
Article
Google Scholar
Galudra G, van Noordwijk M, Agung P, Suyanto S, Pradhan U (2014) Migrants, land markets and carbon emissions in Jambi, Indonesia: land tenure change and the prospect of emission reduction. Mitig Adapt Strat Glob Chang 19(6):715–732
Google Scholar
García-Palacios P, McKie BG, Handa IT, Frainer A, Hättenschwiler S (2016) The importance of litter traits and decomposers for litter decomposition: a comparison of aquatic and terrestrial ecosystems within and across biomes. Funct Ecol 30:819–829
Article
Google Scholar
Grønlund A, Atle H, Anders H, Daniel PR (2008) Carbon loss estimates from cultivated peat soils in Norway: a comparison of three methods. Nutr Cycl Agroecosyst 81:157–167
Article
Google Scholar
Gumbricht T, Roman-Cuesta RM, Verchot L, Herold M, Wittmann F, Householder E, Herold N, Murdiyarso D (2017) An expert system model for mapping tropical wetlands and peatlands reveals South America as the largest contributor. Glob Chang Biol 23(9):3581–3599
Article
Google Scholar
Handayani EP (2009) Emisi karbon dioksida (CO2) dan metan (CH4) pada perkebunan kelapa sawit di lahan gambut yang memiliki keragaman dalam ketebalan gambut dan umur tanaman. PhD thesis, Sekolah Pascasarjana Institut Pertanian Bogor, Bogor.
Hooijer A, Page S, Canadell JG, Silvius M, Kwadijk J, Wösten H, Jauhiainen J (2010) Current and future CO2 emissions from drained peatlands in Southeast Asia. Biogeosciences 7:1505–1514
Article
Google Scholar
Hooijer A, Page S, Jauhiainen J, Lee WA, Lu XX, Idris A, Anshari G (2012) Subsidence and carbon loss in drained tropical peatlands. Biogeosciences 9:1053–1071
Article
Google Scholar
IPCC (2014) 2013 Supplement to the 2006 IPCC guidelines for national greenhouse gas inventories: wetlands. In: T Hiraishi, T Krug, K Tanabe, N Srivastava, J Baasansuren, M Fukuda and TG Troxler (eds). Switzerland: Intergovernmental Panel on Climate Change (IPCC)
Ishikura K, Hirano T, Okimoto Y, Hirata R, Kiew F, Melling L, Aeries EB, San-Lo K, Musin KK, Waili JW, Wong GX (2018) Soil carbon dioxide emissions due to oxidative peat decomposition in an oil palm plantation on tropical peat. Agric Ecosyst Environ 254:202–212
Article
Google Scholar
Jauhiainen J, Hooijer A, Page SE (2012) Carbon dioxide emissions from an Acacia plantation on peatland in Sumatra, Indonesia. Biogeosciences 9:617–630
Article
Google Scholar
Jauhiainen J, Kerojoki O, Silvennoinen H, Limin S, Vasander H (2014) Heterotrophic respiration in drained tropical peat is greatly affected by temperature—a passive ecosystem cooling experiment. Environ Res Lett 9:105013
Article
Google Scholar
Kurnianto S, Warren M, Talbot J, Kauffman B, Murdiyarso D, Frolking S (2015) Carbon accumulation of tropical peatlands over millennia: a modeling approach. Glob Chang Biol 21(1):431–444
Article
Google Scholar
Lampela M, Jauhiainen J, Kämäri L, Koskinen M, Tanhuanp T, Valkeapää A, Vasandera H (2016) Ground surface microtopography and vegetation patterns in a tropical peat swamp forest. Catena 139:127–136. https://doi.org/10.1016/j.catena.2015.12.016
Article
Google Scholar
Larsen RK, Osbeck M, Dawkins E, Tuhkanen H, Nguyen H, Nugroho A, Gardner T, EcoNusantara Z, Wolvekamp P (2018) Hybrid governance in agricultural commodity chains: insights from implementation of ‘no deforestation, no peat, no exploitation’ (NDPE) policies in the oil palm industry. J Clean Prod 183:544–554
Article
Google Scholar
Margono BA, Potapov PV, Turubanova S, Stolle F, Hansen MC (2014) Primary forest cover loss in Indonesia over 2000–2012. Nat Clim Chang 4(8):730–735
Article
Google Scholar
Marwanto S, Agus F (2014) Is CO2 flux from oil palm plantations on peatland controlled by soil moisture and/or soil and air temperatures? Mitig Adapt Strateg Glob Chang 19(6):809–819
Article
Google Scholar
Maswar (2011) Kajian cadangan karbon pada lahan gambut tropika yang didrainase untuk tanaman tahunan. PhD thesis Sekolah Pascasarjana Institut Pertanian Bogor, Bogor
Miettinen J, Shi C, Liew SC (2016) Land cover distribution in the peatlands of Peninsular Malaysia, Sumatra and Borneo in 2015 with changes since 1990. Glob Ecol Conserv 6:67–78
Article
Google Scholar
Miettinen J, Hooijer A, Vernimmen R, Liew SC, Page SE (2017) From carbon sink to carbon source: extensive peat oxidation in insular Southeast Asia since 1990. Environ Res Lett 12(2):024014
Article
Google Scholar
Mulia R, Widayati A, Agung P, Zulkarnain MT (2014) Low carbon emission development strategies for Jambi, Indonesia: simulation and trade-off analysis using the FALLOW model. Mitig Adapt Strateg Glob Chang 19(6):773–788
Article
Google Scholar
Mutert E, Fairhurst TH, von Uexküll HR (1999) Agronomic management of oil palms on deep peat. Better Crops Int 13:22–27
Google Scholar
Nungesser MK (2003) Modelling microtopography in boreal peatlands: hummocks and hollows. Ecol Model 165(2–3):175–207. https://doi.org/10.1016/S0304-3800(03)00067-X
Article
Google Scholar
Nurulita Y (2016) Tropical peat swamp soils: the impact of agricultural and restoration practices on activity and diversity of the soil microbial community. (Doctoral dissertation, RMIT University). https://researchbank.rmit.edu.au/eserv/rmit:161756/Nurulita.pdf Last accessed 6 May 2017
Oktarita S, Hergoualc K, Anwar S, Verchot LV (2017) Substantial N2O emissions from peat decomposition and N fertilization in an oil palm plantation exacerbated by hotspots. Environ Res Lett 12:104007. https://doi.org/10.1088/1748-9326/aa80f1
Article
Google Scholar
Othman H, Mohammed AT, Darus FM, Harun MH, Zambri MP (2011) Best management practices for oil palm cultivation on peat: ground water-table maintenance in relation to peat subsidence and estimation of CO2 emissions at Sessang, Sarawak. J Oil Palm Res 23:1078–1086
Google Scholar
Page SE, Rieley JO, Shotyk ØW, Weiss D (1999) Interdependence of peat and vegetation in a tropical peat swamp forest. Philos Trans R Soc Lond Ser B Biol Sci 354(1391):1885–1897
Article
Google Scholar
Page SE, Morrison R, Malins C, Hooijer A, Rieley JO, Jauhiainen J (2011a) Review of peat surface greenhouse gas emissions from oil palm plantations in Southeast Asia. ICCT White Paper 15, Indirect effects of biofuel production series. Washington: International Council on Clean Transportation
Page SE, Rieley JO, Banks CJ (2011b) Global and regional importance of the tropical peatland carbon pool. Glob Chang Biol 17:798–818. https://doi.org/10.1111/j.1365-2486201002279.x
Article
Google Scholar
Paramananthan S (2010a) Malaysian soil taxonomy—revised, 2nd edition. Param Agricultural Soil Surveys (M) Sdn Bhd Petaling Jaya, Selangor, Malaysia
Paramananthan S (2010b) Keys to the identification of Malaysian soils using parent materials. Param Agricultural Soil Surveys (M) Sdn Bhd Petaling Jaya, Selangor, Malaysia
Reeza AA, Hussin A, Hanif AHM, Sukari MAM (2014) Effect of liming and fertilizer application in hemic and sapric of tropical peat: phosphorus mineralization, infra-red spectroscopy and microscopy. Am J Agric Biol Sci 9(3):321–333
Article
Google Scholar
Ritzema H, Limin S, Kusin K, Jauhiainen J, Wösten H (2014) Canal blocking strategies for hydrological restoration of degraded tropical peatlands in Central Kalimantan, Indonesia. Catena 114:11–20
Article
Google Scholar
Shi X, Thornton PE, Ricciuto DM, Hanson PJ, Mao J, Sebestyen SD, Griffiths NA, Bisht G (2015) Representing northern peatland microtopography and hydrology within the Community Land Model. Biogeosci Discuss 12:3381–3418. https://doi.org/10.5194/bgd-12-3381-2015
Article
Google Scholar
Song C, Wang L, Tian H, Liu D, Lu C, Xu X, Zhang L, Yang G, Wan Z (2013) Effect of continued nitrogen enrichment on greenhouse gas emissions from a wetland ecosystem in the Sanjiang Plain, Northeast China: a 5 year nitrogen addition experiment. J Geophys Res Biogeosci 118:741–751
Article
Google Scholar
Sumarga E, Hein L, Hooijer A, Vernimmen R (2016) Hydrological and economic effects of oil palm cultivation in Indonesian peatlands. Ecol Soc 21(2):52. https://doi.org/10.5751/ES-08490-210252
Article
Google Scholar
Suwarno A, van Noordwijk M, Weikard HP, Suyamto D (2018a) Indonesia’s forest conversion moratorium assessed with an agent-based model of Land-Use Change and Ecosystem Services (LUCES). Mitig Adapt Strateg Glob Chang 23:211–229
Article
Google Scholar
Suwarno A, Hein L, Weikard HP, van Noordwijk M, Nugroho B (2018b) Land-use trade-offs in the Kapuas peat forest, Central Kalimantan, Indonesia, Land Use Policy in press
Tata HL, van Noordwijk M, Ruysschaert D, Mulia R, Rahayu S, Mulyoutami E, Widayati A, Ekadinata A, Zen R, Darsoyo A, Oktaviani R (2014) Will funding to Reduce Emissions from Deforestation and (forest) Degradation (REDD+) stop conversion of peat swamps to oil palm in orangutan habitat in Tripa in Aceh, Indonesia? Mitig Adapt Strateg Glob Chang 19(6):693–713
Google Scholar
Thorburn CC, Kull CA (2015) Peatlands and plantations in Sumatra, Indonesia: complex realities for resource governance, rural development and climate change mitigation. Asia Pac Viewpoint 56(1):153–168
Article
Google Scholar
Tiemeyer B, Kahle P (2014) Nitrogen and dissolved organic carbon (DOC) losses from an artificially drained grassland on organic soils. Biogeosciences 11:4123–4137
Article
Google Scholar
Turetsky MR, Benscoter B, Page S, Rein G, Van Der Werf GR, Watts A (2015) Global vulnerability of peatlands to fire and carbon loss. Nat Geosci 8(1):11–14
Article
Google Scholar
van Noordwijk M, Agus F, Dewi S, Purnomo H (2014a) Reducing emissions from land use in Indonesia: motivation, policy instruments and expected funding streams. Mitig Adapt Strateg Glob Chang 19(6):677–692
Google Scholar
van Noordwijk M, Matthews RB, Agus F, Farmer J, Verchot L, Hergoualc’h K, Persch S, Tata HL, Lusiana B, Widayati A, Dewi S (2014b) Mud, muddle and models in the knowledge value-chain to action on tropical peatland issues. Mitig Adapt Strateg Glob Chang 19:863–885
Article
Google Scholar
Veloo R, van Ranst E, Paramananthan S (2015) Peat characteristics and its impact on oil palm yield. NJAS 72:33–40
Google Scholar
Wahyunto Ritung S, Subagjo H (2003) Peta luas sebaran lahan gambut dan kandungan karbon di pulau Sumatera/Maps of area of peatland distribution and carbon content in Sumatera, 1990 – 2002. Wetlands International-Indonesia Program and Wildlife Habitat Canada (WHC).
Wakhid N, Hirano T, Okimoto Y, Nurzakiah S, Nursyamsi D (2017) Soil carbon dioxide emissions from a rubber plantation on tropical peat. Sci Total Environ 1; 581–582:857–865. https://doi.org/10.1016/j.scitotenv.2017.01.035
Warren MW, Kauffman JB, Murdiyarso D, Anshari G, Hergoualc’h K, Kurnianto S, Purbopuspito J, Gusmayanti E, Afifudin M, Rahajoe J, Alhamd L, Limin S, Iswandi A (2012) A cost-efficient method to assess carbon stocks in tropical peat soil. Biogeosciences 9:4477–4485
Article
Google Scholar
Warren M, Frolking S, Zhaohua D, Kurnianto S (2017) Impacts of land use, restoration, and climate change on tropical peat carbon stocks in the twenty-first century: implications for climate mitigation. Mitig Adapt Strateg Glob Chang 22(7):1041–1061
Article
Google Scholar
Widayati A, Johana F, Zulkarnain MT dan Mulyoutami E (2012) Perubahan Penggunaan Lahan, Faktor Pemicu dan Pengaruhnya terhadap Emisi CO2 di Kabupaten Tanjung Jabung Barat (Tanjabar), Propinsi Jambi, Brief No 21. Bogor, Indonesia. World Agroforestry Centre – ICRAF, SEA Regional Office 4p.
Wijedasa LS, Jauhiainen J, Könönen M, Lampela M, Vasander H, Leblanc MC, Evers S, Smith TE, Yule CM, Varkkey H, Lupascu M (2017) Denial of long-term issues with agriculture on tropical peatlands will have devastating consequences. Glob Chang Biol 23(3):977–982
Article
Google Scholar
Wösten JHM Clymans E, Page SE, Rieley JO, Limin SH (2008) Peat–water interrelationships in a tropical peatland ecosystem in Southeast Asia. Catena 73(2):212–224
Article
Google Scholar
Wösten JHM, Ismail AB, van Wijk ALM (1997) Peat subsidence and its practical implications: a case study in Malaysia. Geoderma 78:25–36
Article
Google Scholar
Page SE, Hosciło A, Wösten H, Jauhiainen J, Silvius M, Rieley J, Ritzema H, Tansey K, Graham L, Vasander H, Limin S (2009) Restoration ecology of lowland tropical peatlands in Southeast Asia: current knowledge and future research directions. Ecosystems 12(6):888–905
Article
Google Scholar