Advertisement

Minds and Machines

, Volume 26, Issue 3, pp 259–285 | Cite as

A Cautionary Contribution to the Philosophy of Explanation in the Cognitive Neurosciences

  • A. Nicolás Venturelli
Article

Abstract

I propose a cautionary assessment of the recent debate concerning the impact of the dynamical approach on philosophical accounts of scientific explanation in the cognitive sciences and, particularly, the cognitive neurosciences. I criticize the dominant mechanistic philosophy of explanation, pointing out a number of its negative consequences: In particular, that it doesn’t do justice to the field’s diversity and stage of development, and that it fosters misguided interpretations of dynamical models’ contribution. In order to support these arguments, I analyze a case study in computational neuroethology and show why it should not be understood through a mechanistic lens; I specially focus on Zednik’s mechanistic interpretation of the case study. In addition, I argue for a greater appreciation of the relation between explanation and other epistemic goals in the field, as well as an increased sensitivity towards the associated contextual factors.

Keywords

Explanation Dynamical approach Scientific models Mechanisms Philosophy of neuroscience 

Notes

Acknowledgments

I wish to thank two anonymous reviewers for their insightful feedback on my work. Also, thanks to Itatí Branca for her input on an earlier version of the paper.

References

  1. Abrahamsen, A., & Bechtel, W. (2006). Phenomena and mechanisms: Putting the symbolic, connectionist, and dynamical systems debate in broader perspective. In R. Stainton (Ed.), Contemporary debates in cognitive science (pp. 159–185). Malden, MA: Blackwell.Google Scholar
  2. Abrahamsen, A., & Bechtel, W. (2012). From reactive to endogenously active dynamical conceptions of the brain. In K. Plaisance & T. Reydon (Eds.), Philosophy of behavioral biology (pp. 329–366). Amsterdam: Springer.CrossRefGoogle Scholar
  3. Aminoff, E., Balslev, D., Borroni, P., Bryan, R., Chua, E., Cloutier, J., et al. (2009). The landscape of cognitive neuroscience: Challenges, rewards, and new perspectives. In M. Gazzaniga (Ed.), The cognitive neurosciences IV (pp. 1253–1260). Cambridge, MA: MIT Press.Google Scholar
  4. Bechtel, W. (1998). Representations and cognitive explanations: Assessing the dynamicist’s challenge in cognitive science. Cognitive Science, 22(3), 295–318.CrossRefGoogle Scholar
  5. Bechtel, W. (2001). The compatibility of complex systems and reduction. Minds and Machines, 11(4), 483–502.CrossRefGoogle Scholar
  6. Bechtel, W. (2002). Aligning multiple research techniques in cognitive neuroscience. Philosophy of Science, 69, S48–S58.CrossRefGoogle Scholar
  7. Bechtel, W. (2008). Mental mechanisms. London: Routledge.Google Scholar
  8. Bechtel, W., & Richardson, R. (2010). Discovering complexity. Cambridge, MA: MIT Press.Google Scholar
  9. Beer, R. (1996). Toward the evolution of dynamical neural networks for minimally cognitive behavior. In P. Maes, M. Matarić, J.-A. Meyer, J. Pollack, & S. Wilson (Eds.), From animals to animats (Vol. 4, pp. 421–429). Cambridge, MA: MIT Press.Google Scholar
  10. Beer, R. (1997). The dynamics of adaptive behavior: A research program. Robotics and Autonomous Systems, 20(2), 257–289.MathSciNetCrossRefGoogle Scholar
  11. Beer, R. (2000). Dynamical approaches in cognitive science. Trends in Cognitive Sciences, 4(3), 91–99.MathSciNetCrossRefGoogle Scholar
  12. Beer, R. (2003). The dynamics of active categorical perception in an evolved model agent. Adaptive Behavior, 11(4), 209–243.CrossRefGoogle Scholar
  13. Bickle, J. (2006). Reducing mind to molecular pathways: Explicating the reductionism implicit in current cellular and molecular neuroscience. Synthese, 151(3), 411–434.MathSciNetCrossRefGoogle Scholar
  14. Bickle, J., & Hardcastle, V. (2012). Philosophy of neuroscience. Elsevier Life Sciences Reviews. doi: 10.1002/9780470015902.a0024144.Google Scholar
  15. Buzsáki, G. (2006). Rhythms of the brain. Oxford: Oxford University Press.CrossRefMATHGoogle Scholar
  16. Chemero, A. (2009). Radical embodied cognitive science. Cambridge, MA: MIT Press.Google Scholar
  17. Chemero, A., & Silberstein, M. (2008). After the philosophy of mind. Philosophy of Science, 75(1), 1–27.CrossRefGoogle Scholar
  18. Cooper, R., & Shallice, T. (2010). Cognitive neuroscience: The troubled marriage of cognitive science and neuroscience. Topics in Cognitive Science, 2(3), 398–406.CrossRefGoogle Scholar
  19. Craver, C. (2005). Beyond reduction: Mechanisms, multifield integration, and the unity of science. Studies in History and Philosophy of Biological and Biomedical Sciences, 36(2), 373–396.CrossRefGoogle Scholar
  20. Craver, C. (2006). What mechanistic models explain. Synthese, 153(3), 355–376.MathSciNetCrossRefGoogle Scholar
  21. Craver, C. (2008). Physical law and mechanistic explanation in the Hodgkin and Huxley model of the action potential. Philosophy of Science, 75(5), 1022–1033.CrossRefGoogle Scholar
  22. Cummins, R. (1975). Functional analysis. Journal of Philosophy, 72(20), 741–764.CrossRefGoogle Scholar
  23. Dale, R. (2008). The possibility of a pluralist cognitive science. Journal of Experimental and Theoretical Artificial Intelligence, 20(3), 155–179.CrossRefGoogle Scholar
  24. Dale, R., Dietrich, E., & Chemero, A. (2009). Explanatory pluralism in cognitive science. Cognitive Science, 33(5), 739–742.CrossRefGoogle Scholar
  25. Deco, G., Tononi, G., Boly, M., & Kringelbach, M. (2015). Rethinking segregation and integration: Contributions of whole-brain modelling. Nature Reviews Neuroscience, 16(7), 430–439.CrossRefGoogle Scholar
  26. Dietrich, E., & Markman, A. (2001). Dynamical description versus dynamical modeling. Trends in Cognitive Sciences, 5(8), 332.CrossRefGoogle Scholar
  27. Dupré, J. (2013). Living causes. Aristotelian Society Supplementary, 87(1), 19–37.CrossRefGoogle Scholar
  28. Engel, A., Fries, P., & Singer, W. (2001). Dynamic predictions: Oscillations and synchrony in top-down processing. Nature Reviews Neuroscience, 2(10), 704–716.CrossRefGoogle Scholar
  29. Engel, A., Friston, K., Kelso, S., König, P., Kovács, I., MacDonald, A., et al. (2010). Coordination in behavior and cognition. In C. von der Malsburg, W. Phillips, & W. Singer (Eds.), Dynamic coordination in the brain: From neurons to mind (pp. 267–299). Cambridge, MA: MIT Press.CrossRefGoogle Scholar
  30. Freeman, W. (2005). A field-theoretic approach to understanding scale-free neocortical dynamics. Biological Cybernetics, 92(6), 350–359.MathSciNetCrossRefMATHGoogle Scholar
  31. Gazzaniga, M., Doron, K., & Funk, C. (2009). Looking toward the future: Perspectives on examining the architecture and function of the human brain as a complex system. In M. Gazzaniga (Ed.), The cognitive neurosciences IV (pp. 267–299). Cambridge, MA: MIT Press.Google Scholar
  32. Gervais, R. (2015). Mechanistic and non-mechanistic varieties of dynamical models in cognitive science: Explanatory power, understanding, and the ‘mere description’ worry. Synthese, 192(1), 43–66.MathSciNetCrossRefGoogle Scholar
  33. Glennan, S. (2002). Rethinking mechanistic explanation. Philosophy of Science, 69(3), 342–353.CrossRefGoogle Scholar
  34. Glennan, S. (2005). Modeling mechanisms. Studies in History and Philosophy of Biological and Biomedical Sciences, 36(2), 443–464.CrossRefGoogle Scholar
  35. Harnad, S. (1987). Introduction: Psychophysical and cognitive aspects of categorical perception. In S. Harnad (Ed.), Categorical perception: The groundwork of cognition (pp. 1–25). Cambridge: Cambridge University Press.Google Scholar
  36. Huster, R., Debener, S., Eichele, T., & Herrmann, C. (2012). Methods for simultaneous EEG-fMRI: An introductory review. The Journal of Neuroscience, 32(18), 6053–6060.CrossRefGoogle Scholar
  37. Izhikevich, E. (2007). Dynamical systems in neuroscience. Cambridge, MA: MIT Press.Google Scholar
  38. Kaplan, D., & Bechtel, W. (2011). Dynamical models: An alternative or complement to mechanistic explanations? Topics in Cognitive Science, 3(2), 438–444.CrossRefGoogle Scholar
  39. Kaplan, D., & Craver, C. (2011). The explanatory force of dynamical and mathematical models in neuroscience. Philosophy of Science, 78(4), 601–627.MathSciNetCrossRefGoogle Scholar
  40. Kelso, S. (1995). Dynamic patterns: The self-organization of brain and behavior. Cambridge, MA: MIT Press.Google Scholar
  41. Koertge, N. (1992). Explanation and its problems. British Journal for the Philosophy of Science, 43(1), 85–98.CrossRefGoogle Scholar
  42. Matthewson, J. (2011). Trade-offs in model-building: A more target-oriented approach. Studies in History and Philosophy of Science, 42(2), 324–333.CrossRefGoogle Scholar
  43. Mitchell, M. (2009). Complexity: A guided tour. Oxford: Oxford University Press.MATHGoogle Scholar
  44. Revonsuo, A. (2001). On the nature of explanation in the neurosciences. In P. Machamer, P. McLaughlin, & R. Grush (Eds.), Theory and method in the neurosciences (pp. 45–69). Pittsburgh: University of Pittsburgh Press.Google Scholar
  45. Rodriguez, E., George, N., Lachaux, J.-P., Martinerie, J., Renault, B., & Varela, F. (1999). Perception’s shadow: Long-distance synchronization of human brain activity. Nature, 397(9718), 430–433.Google Scholar
  46. Rosa, M., Daunizeau, J., & Friston, K. (2010). EEG/fMRI integration: A critical review of biophysical modeling and data analysis approaches. Journal of Integrative Neuroscience, 9(4), 453–476.CrossRefGoogle Scholar
  47. Ross, L. (2015). Dynamical models and explanation in neuroscience. Philosophy of Science, 82(1), 32–54.CrossRefGoogle Scholar
  48. Schöner, G., & Reimann, H. (2009). Understanding embodied cognition through dynamical systems thinking. In J. Symons & F. Calvo (Eds.), The Routledge companion to philosophy of psychology (pp. 450–473). New York: Routledge.Google Scholar
  49. Silberstein, M., & Chemero, A. (2013). Constraints on localization and decomposition as explanatory strategies in the biological sciences. Philosophy of Science, 80(5), 958–970.CrossRefGoogle Scholar
  50. Slocum, A., Downey, D., & Beer, R. (2000). Further experiments in the evolution of minimally cognitive behavior. In J.-A. Meyer, A. Berthoz, D. Floreano, H. Roitblat, & S. Wilson (Eds.), From animals to animats (Vol. 6, pp. 430–439). Cambridge, MA: MIT Press.Google Scholar
  51. Smith, L., & Thelen, E. (2003). Development as a dynamic system. Trends in Cognitive Sciences, 7(8), 343–348.CrossRefGoogle Scholar
  52. Stepp, N., Chemero, A., & Turvey, M. (2011). Philosophy for the rest of cognitive science. Topics in Cognitive Science, 3(2), 425–437.CrossRefGoogle Scholar
  53. Stewart, L., & Walsh, V. (2006). Transcranial magnetic stimulation in human cognition. In C. Senior, T. Russell, & M. Gazzaniga (Eds.), Methods in mind (pp. 1–26). Cambridge, MA: MIT Press.Google Scholar
  54. Strogatz, S. (1994). Nonlinear dynamics and chaos. Reading: Addison-Wesley.Google Scholar
  55. Sullivan, J. (2009). The multiplicity of experimental protocols. Synthese, 167(3), 511–539.CrossRefGoogle Scholar
  56. Thelen, E., Schöner, G., Scheier, C., & Smith, L. (2001). The dynamics of embodiment. Behavioral and Brain Sciences, 24(1), 1–86.CrossRefGoogle Scholar
  57. van Gelder, T. (1997). Dynamics and cognition. In J. Haugeland (Ed.), Mind design II: Philosophy, psychology, artificial intelligence (pp. 421–450). Cambridge, MA: MIT Press.Google Scholar
  58. van Gelder, T. (1998). The dynamical hypothesis in cognitive science. Behavioral and Brain Sciences, 21(5), 615–665.Google Scholar
  59. van Gelder, T., & Port, R. (1995). It’s about time. In R. Port & T. van Gelder (Eds.), Mind as motion (pp. 1–43). Cambridge, MA: MIT Press.Google Scholar
  60. van Leeuwen, M. (2005). Questions for the dynamicist. Minds and Machines, 15(3), 271–333.CrossRefGoogle Scholar
  61. Venturelli, N. (2012). ¿Puede hablarse de una explicación dinamicista en las ciencias cognitivas? Ludus Vitalis37, 151–174.Google Scholar
  62. Venturelli, N. (2015). Un abordaje epistemológico de la integración neurocientífica: el caso de los estudios EEG / RMf. In V. Rodríguez, M. Velasco, & P. García (Eds.), Epistemología y prácticas científicas (pp. 41–71). Córdoba: Editorial Universitaria.Google Scholar
  63. Walmsley, J. (2008). Explanation in dynamical cognitive science. Minds and Machines, 18(3), 331–348.CrossRefGoogle Scholar
  64. Weiskopf, D. (2011). Models and mechanisms in psychological explanation. Synthese, 183(3), 313–338.CrossRefGoogle Scholar
  65. Woodward, J. (Forthcoming). Explanation in neurobiology: An interventionist perspective. In D. Kaplan (Ed.), Integrating psychology and neuroscience: Prospects and problems. Oxford: Oxford University Press. http://philsci-archive.pitt.edu/10974/2/jw._8.23._Kaplan.Explanation_in_Neurobiologyx.pdf. Accessed 12 March 2015.
  66. Zednik, C. (2011). The nature of dynamical explanation. Philosophy of Science, 78(2), 236–263.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Instituto de Humanidades (CONICET/Universidad Nacional de Córdoba)CórdobaArgentina

Personalised recommendations