Skip to main content
Log in

Close-to-optimal continuity bound for the von Neumann entropy and other quasi-classical applications of the Alicki–Fannes–Winter technique

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider a quasi-classical version of the Alicki–Fannes–Winter technique widely used for quantitative continuity analysis of characteristics of quantum systems and channels. This version allows us to obtain continuity bounds under constraints of different types for quantum states belonging to subsets of a special form that can be called “quasi-classical”. Several applications of the proposed method are described. Among others, we obtain the universal continuity bound for the von Neumann entropy under the energy-type constraint which in the case of one-mode quantum oscillator is close to the specialized optimal continuity bound presented recently by Becker, Datta and Jabbour. We obtain semi-continuity bounds for the quantum conditional entropy of quantum-classical states and for the entanglement of formation in bipartite quantum systems with the rank/energy constraint imposed only on one state. Semi-continuity bounds for entropic characteristics of classical random variables and classical states of a multi-mode quantum oscillator are also obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Notes

  1. The support \(\textrm{supp}\rho \) of a state \(\rho \) is the closed subspace spanned by the eigenvectors of \(\rho \) corresponding to its positive eigenvalues.

  2. The necessity to consider the case \(\,\mathfrak {S}_0\ne \mathfrak {S}_m(\mathcal {H}_{A_{1}\ldots A_{n}})\) is shown in Section 4.

  3. This is a weakened form of the \(\Delta \)-invariance property [35, Section 3].

  4. \(\,[\rho -\varepsilon I_{A_1\ldots A_n}]_+\) is the positive part of the Hermitian operator \(\,\rho -\varepsilon I_{A_1\ldots A_n}\).

  5. In [43], the function \(F_{H}(E)\) is denoted by \(S(\gamma (E))\).

  6. \(\,[\rho -\varepsilon I_{\mathcal {H}}]_+\) is the positive part of the Hermitian operator \(\,\rho -\varepsilon I_{\mathcal {H}}\).

  7. We assume that \(\dim \mathcal {H}=+\infty \).

  8. Throughout this subsection, we assume that \(\rho \) and \(\sigma \) are q-c states having representation (58).

  9. The definitions of all the notions from the classical information theory used in this section can be found in [12].

  10. These inequalities are the classical versions of the inequalities in [33, formula (10)].

  11. The convex closure of a set S in a Banach space is the minimal closed convex set containing S.

  12. Another corollaries of the \(\mu \)-compactness of \(\mathfrak {S}(\mathcal {H})\) are presented in the first part of [34].

References

  1. Alhejji, M.A., Smith, G.: A tight uniform continuity bound for equivocation. In: IEEE International Symposium on Information Theory (ISIT), Los Angeles, CA, USA, pp. 2270–2274 (2020)

  2. Alicki, R., Fannes, M.: Continuity of quantum conditional information. J. Phys. A Math. Gen. 37(5), L55–L57 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  3. Amosov, G.G.: On various functional representations of the space of Schwarz operators. J. Math. Sci. (N.Y.) 252(1), 1–7 (2021)

    Article  Google Scholar 

  4. Audenaert, K.M.R.: A sharp continuity estimate for the von Neumann entropy. J. Math. Phys. A Math. Theor. 40(28), 8127–8136 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  5. Becker, S., Datta, N.: Convergence rates for quantum evolution and entropic continuity bounds in infinite dimensions. Commun. Math. Phys. 374, 823–871 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  6. Becker, S., Datta, N., Jabbour, M.G.: From classical to quantum: uniform continuity bounds on entropies in infinite dimensions. IEEE Trans. Inf. Theory 69(7), 4128–4144 (2023)

  7. Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824–3851 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  8. Bengtsson, I., Zyczkowski, K.: Geometry of Quantum States: An Introduction to Quantum Entanglement. Cambridge University Press, Cambridge (2017)

    Book  Google Scholar 

  9. Billingsley, P.: Convergence of Probability Measures. Wiley, New York (1968)

    Google Scholar 

  10. Billingsley, P.: Probability and Measure. Wiley, New York (1995)

    Google Scholar 

  11. Bluhm, A., Capel, A., Gondolf, P., Perez-Hernandez, A.: Continuity of quantum entropic quantities via almost convexity. IEEE Trans. Inf. Theory 69(9), 5869–5901 (2023)

  12. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (2006)

    Google Scholar 

  13. Fannes, M.: A continuity property of the entropy density for spin lattice systems. Commun. Math. Phys. 31, 291–294 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  14. Gerry, Ch., Knight, P.L.: Introductory Quantum Optics. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  15. Ghourchian, H., Gohari, A., Amini, A.: Existence and continuity of differential entropy for a class of distributions. IEEE Commun. Lett. 21(7), 1469–1472 (2017). https://doi.org/10.1109/LCOMM.2017.2689770

    Article  Google Scholar 

  16. Glauber, R.J.: Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  17. Holevo, A.S.: Quantum Systems, Channels, Information. A Mathematical Introduction. DeGruyter, Berlin (2012)

    Book  Google Scholar 

  18. Holevo, A.S., Shirokov, M.E.: Continuous ensembles and the capacity of infinite-dimensional quantum channels. Theory Probab. Appl. 50(1), 86–98 (2005)

    Article  MathSciNet  Google Scholar 

  19. Holevo, A.S., Shirokov, M.E., Werner, R.F.: On the notion of entanglement in Hilbert spaces. Russ. Math. Surv. 60(2), 359–360 (2005)

    Article  Google Scholar 

  20. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  21. Khatri, S., Wilde, M.M.: Principles of Quantum Communication Theory: A Modern Approach. arXiv:2011.04672 (2020)

  22. Kuznetsova, A.A.: Quantum conditional entropy for infinite-dimensional systems. Theory Probab. Appl. 55(4), 709–717 (2011)

    Article  MathSciNet  Google Scholar 

  23. Lindblad, G.: Expectation and entropy inequalities for finite quantum systems. Commun. Math. Phys. 39(2), 111–119 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  24. Lindblad, G.: Entropy, information and quantum measurements. Commun. Math. Phys. 33, 305–322 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  25. Mirsky, L.: Symmetric gauge functions and unitarily invariant norms. Quart. J. Math. Oxford 2(11), 50–59 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  26. Mosonyi, M., Hiai, F.: On the quantum Renyi relative entropies and related capacity formulas. IEEE Trans. Inf. Theory 57(4), 2474–2487 (2011)

    Article  Google Scholar 

  27. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  28. Nielsen, M.A.: Continuity bounds for entanglement. Phys. Rev. A 61(6), 064301 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  29. Ohya, M., Petz, D.: Quantum Entropy and Its Use, Theoretical and Mathematical Physics. Springer, Berlin (2004)

    Google Scholar 

  30. Plenio, M.B., Virmani, S.: An introduction to entanglement measures. Quantum Inf. Comput. 7(1–2), 1–51 (2007)

    MathSciNet  Google Scholar 

  31. Protasov, VYu., Shirokov, M.E.: Generalized compactness in linear spaces and its applications. Sb. Math. 200(5), 697–722 (2009)

    Article  MathSciNet  Google Scholar 

  32. Shirokov, M.E.: Entropy characteristics of subsets of states I. Izv. Math. 70(6), 1265–1292 (2006)

    Article  MathSciNet  Google Scholar 

  33. Shirokov, M.E.: Uniform continuity bounds for characteristics of multipartite quantum systems. J. Math. Phys. 62(9), 92206 (2021)

    Article  MathSciNet  Google Scholar 

  34. Shirokov, M.E.: On properties of the space of quantum states and their application to the construction of entanglement monotones. Izv. Math. 74(4), 849–882 (2010)

    Article  MathSciNet  Google Scholar 

  35. Shirokov, M.E.: Quantifying continuity of characteristics of composite quantum systems. Phys. Scr. 98, 042002 (2023)

    Article  ADS  Google Scholar 

  36. Sudarshan, E.C.G.: Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett. 10, 277 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  37. Synak-Radtke, B., Horodecki, M.: On asymptotic continuity of functions of quantum states. J. Phys. A Gen. Phys. 39(26), L423 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  38. Talagrand, M.: Pettis integral and measure theory. Mem. Am. Math. Soc. 51(307), ix+224 (1984)

  39. Watanabe, S.: Information theoretical analysis of multivariate correlation. IBM J. Res. Dev. 4, 66–82 (1960)

    Article  MathSciNet  Google Scholar 

  40. Wehrl, A.: General properties of entropy. Rev. Mod. Phys. 50, 221–250 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  41. Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013)

    Book  Google Scholar 

  42. Wilde, M.M.: Optimal uniform continuity bound for conditional entropy of classical-quantum states. Quantum Inf. Process. 19, Article no. 61 (2020)

  43. Winter, A.: Tight uniform continuity bounds for quantum entropies: conditional entropy, relative entropy distance and energy constraints. Commun. Math. Phys. 347(1), 291–313 (2016)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

I am grateful to A.S. Holevo and G.G. Amosov for valuable discussion. I am also grateful to L. Lami for the useful reference. Special thanks to A. Winter for the comment concerning Mirsky’s inequality. I am grateful to the unknown reviewers for valuable suggestions and typos found. This work was funded by Russian Federation represented by the Ministry of Science and Higher Education (Grant Number 075-15-2020-788).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maksim Shirokov.

Ethics declarations

Conflict of interest

The corresponding author states that there is no conflict of interest.

Additional information

I dedicate this article to the memory of Mary Beth Ruskai, an outstanding scientist and a wonderful person. .

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirokov, M. Close-to-optimal continuity bound for the von Neumann entropy and other quasi-classical applications of the Alicki–Fannes–Winter technique. Lett Math Phys 113, 121 (2023). https://doi.org/10.1007/s11005-023-01742-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11005-023-01742-3

Keywords

Mathematics Subject Classification

Navigation