Skip to main content
Log in

Loop vertex expansion for higher-order interactions

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

This note provides an extension of the constructive loop vertex expansion to stable interactions of arbitrarily high order, opening the way to many applications. We treat in detail the example of the \((\bar{\phi } \phi )^p\) field theory in zero dimension. We find that the important feature to extend the loop vertex expansion is not to use an intermediate field representation, but rather to force integration of exactly one particular field per vertex of the initial action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Here it is fair to add that the models built so far are only of the superrenormalizable type. Moreover, the MLVE is especially adapted to resum the renormalized series of non-local field theories of the matrix or tensorial type. For ordinary local field theories, until now, and in contrast with the more traditional constructive methods such as cluster and Mayer expansions, it does not conveniently provide the spatial decay of truncated functions. See, however, [18, 19].

  2. This terminology follows from the graphical representation of \(S_p\) given in Sect. 4.

  3. We thank A. Sokal for pointing this argument to us.

References

  1. Rivasseau, V.: Constructive matrix theory. JHEP 0709, 008 (2007). arXiv:0706.1224 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  2. Brydges, D., Kennedy, T.: Mayer expansions and the Hamilton–Jacobi equation. J. Stat. Phys. 48, 19 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  3. Abdesselam, A., Rivasseau, V.: Trees, forests and jungles: a botanical garden for cluster expansions. In: Constructive Physics, Lectures Notes in Physics, vol. 446. Springer, New York (1995). arXiv:9409094 [hep-th]

  4. Rivasseau, V., Wang, Z.: How to resum Feynman graphs. Annales Henri Poincaré 15(11), 2069 (2014). arXiv:1304.5913 [math-ph]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Gurau, R., Ryan, J.P.: Colored tensor models—a review. SIGMA 8, 020 (2012). arXiv:1109.4812 [hep-th]

    MathSciNet  MATH  Google Scholar 

  6. Gurau, R.: Random Tensors. Oxford University Press, Oxford (2016)

    Book  MATH  Google Scholar 

  7. ’t Hooft, G.: A planar diagram theory for strong interactions. Nucl. Phys. B 72, 461 (1974)

    Article  ADS  Google Scholar 

  8. Gurau, R.: The \(1/N\) expansion of colored tensor models. Annales Henri Poincaré 12, 829 (2011). arXiv:1011.2726 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Gurau, R., Rivasseau, V.: The \(1/N\) expansion of colored tensor models in arbitrary dimension. Europhys. Lett. 95, 50004 (2011). arXiv:1101.4182 [gr-qc]

    Article  ADS  Google Scholar 

  10. Gurau, R.: The complete \(1/N\) expansion of colored tensor models in arbitrary dimension. Annales Henri Poincaré 13, 399 (2012). arXiv:1102.5759 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Gurau, R., Krajewski, T.: Analyticity results for the cumulants in a random matrix model. Ann. Inst. H. Poincaré D, Comb. Phys. Interact. 2, 169–228 (2015). arXiv:1409.1705 [math-ph]

    Article  MathSciNet  MATH  Google Scholar 

  12. Gurau, R.: The \(1/N\) expansion of tensor models beyond perturbation theory. Commun. Math. Phys. 330, 973 (2014). arXiv:1304.2666 [math-ph]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Delepouve, T., Gurau, R., Rivasseau, V.: Universality and Borel summability of arbitrary quartic tensor models. Ann. Inst. H. Poincaré Probab. Stat. 52(2), 821–848 (2016). arXiv:1403.0170 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Gurau, R., Rivasseau, V.: The multiscale loop vertex expansion. Annales Henri Poincaré 16(8), 1869 (2015). arXiv:1312.7226 [math-ph]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Delepouve, T., Rivasseau, V.: Constructive tensor field theory: the \(T^4_3\) model. Commun. Math. Phys. 345, 477–506 (2016). arXiv:1412.5091 [math-ph]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Lahoche, V.: Constructive Tensorial Group Field Theory II: The \(U(1)-T^4_4\) Model. arXiv:1510.05051 [hep-th]

  17. Rivasseau, V., Vignes-Tourneret, F.: Constructive tensor field theory: the \(T^{4}_{4}\) model. arXiv:1703.06510 [math-ph]

  18. Magnen, J., Rivasseau, V.: Constructive \(\phi ^4\) field theory without tears. Annales Henri Poincaré 9, 403 (2008). arXiv:0706.2457 [math-ph]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Rivasseau, V., Wang, Z.: Corrected loop vertex expansion for \(\Phi _2^4\) theory. J. Math. Phys. 56(6), 062301 (2015). arXiv:1406.7428 [math-ph]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Rivasseau, V., Wang, Z.: Loop vertex expansion for Phi**2K theory in zero dimension. J. Math. Phys. 51, 092304 (2010). arXiv:1003.1037 [math-ph]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Lionni, L., Rivasseau, V.: Note on the Intermediate Field Representation of \(\phi ^{2k}\) Theory in Zero Dimension. arXiv:1601.02805

  22. Lionni, L., Rivasseau, V.: Intermediate Field Representation for Positive Matrix and Tensor Interactions. arXiv:1609.05018 [math-ph]

  23. Gallavotti, G.: Perturbation theory. In: Sen, R., Gersten, A. (eds.) Mathematical Physics Towards the XXI Century, pp. 275–294. Ben Gurion University Press, Ber Sheva (1994)

    Google Scholar 

  24. Młotkowski, W., Penson, K.A.: Probability distributions with binomial moments. Infin. Dimens. Anal. Quantum. Probab. Relat. Top. 17, 1450014 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Bonzom, V., Gurau, R., Riello, A., Rivasseau, V.: Critical behavior of colored tensor models in the large N limit. Nucl. Phys. B 853, 174 (2011). arXiv:1105.3122 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Rivasseau, V.: Quantum gravity and renormalization: the tensor track. AIP Conf. Proc. 1444, 18–29 (2012). arXiv:1112.5104

    Article  ADS  Google Scholar 

  27. Rivasseau, V.: The Tensor Track: An Update. Symmetries and Groups in Contemporary Physics, pp. 63–74, World Scientific, Singapore (2013). arXiv:1209.5284

  28. Rivasseau, V.: The tensor track, III. Fortsch. Phys. 62, 81 (2014). arXiv:1311.1461 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Rivasseau, V.: The tensor track, IV. PoS CORFU 2015, 106 (2016). arXiv:1604.07860 [hep-th]

    Google Scholar 

  30. Rivasseau, V.: Random tensors and quantum gravity. SIGMA 12, 069 (2016). arXiv:1603.07278 [math-ph]

    MathSciNet  MATH  Google Scholar 

  31. Witten, E.: An SYK-Like Model Without Disorder. arXiv:1610.09758 [hep-th]

  32. Gurau, R.: The complete \(1/N\) expansion of a SYK-like tensor model. Nucl. Phys. B 916, 386 (2017). arXiv:1611.04032 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Klebanov, I.R., Tarnopolsky, G.: Uncolored random tensors, melon diagrams, and the SYK models. Phys. Rev. D 95(4), 046004 (2017). arXiv:1611.08915 [hep-th]

    Article  ADS  Google Scholar 

  34. Krishnan, C., Sanyal, S., Bala Subramanian, P.N.: Quantum chaos and holographic tensor models. J. High Energy Phys. 56, (2017). arXiv:1612.06330 [hep-th]

  35. Ferrari, F.: The Large D Limit of Planar Diagrams. To Appear in Ann. Inst. H. Poincaré D. arXiv:1701.01171 [hep-th]

  36. Gurau, R.: Quenched equals annealed at leading order in the colored SYK model. arXiv:1702.04228 [hep-th]

  37. Bonzom, V., Lionni, L., Tanasa, A.: Diagrammatics of a colored SYK model and of an SYK-like tensor model, leading and next-to-leading orders. J. Math. Phys. 58, 052301 (2017). arXiv:1702.06944 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Ben Geloun, V., Rivasseau, V.: A renormalizable 4-dimensional tensor field theory. Commun. Math. Phys. 318, 69 (2013). arXiv:1111.4997 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Carrozza, S., Oriti, D., Rivasseau, V.: Renormalization of a SU(2) tensorial group field theory in three dimensions. Commun. Math. Phys. 330, 581 (2014). arXiv:1303.6772 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Perrin, D.: Private communication

  41. Osada, H.: The Galois group of the polynomials \(X^n + a X^{\prime } +b\). J. Number Theory 25, 230–238 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  42. Rivasseau, V.: Constructive tensor field theory. SIGMA 12, 085 (2016). arXiv:1603.07312 [math-ph]

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank G. Duchamp, R. Gurau, L. Lionni and A. Sokal for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Rivasseau.

Appendix: explicit formulas for p small

Appendix: explicit formulas for p small

1.1 The \((\bar{\phi } \phi )^2\) theory

In this case, \(g= (-\lambda )^{\frac{1}{2}} = i \sqrt{\lambda }\), \(\lambda = - g^2\) and \(z = g^2 \bar{\phi } \phi = - \lambda \bar{\phi } \phi \). Equation (2.14) takes the form

$$\begin{aligned} zT_2^2(z) -T_2(z) +1 =0 \end{aligned}$$
(6.1)

with solution the ordinary Catalan function

$$\begin{aligned} T_2(z) = \frac{1- \sqrt{1 -4z}}{2z}. \end{aligned}$$
(6.2)

We find

$$\begin{aligned} F_2(z) = z T_2' +T_2 = (1- 4z)^{-1/2} = \left( 1- 4g^2 \bar{\phi } \phi \right) ^{-1/2} = \left( 1 + 4 \lambda \bar{\phi } \phi \right) ^{-1/2},\nonumber \\ \end{aligned}$$
(6.3)

and the LVR action is

$$\begin{aligned} S_2 = - \frac{1}{2}\log (1 -4z) = - \frac{1}{2}\log \left( 1- 4g^2 \bar{\phi } \phi \right) = - \frac{1}{2}\log \left( 1+4 \lambda \bar{\phi } \phi \right) . \end{aligned}$$
(6.4)

Its first-order derivative is

$$\begin{aligned} \frac{\partial S_2}{\partial g}= \frac{4g \bar{\phi } \phi }{1- 4g^2 \bar{\phi } \phi } \end{aligned}$$
(6.5)

so that the loop vertex representation of the partition function is

$$\begin{aligned} Z_2(\lambda )= & {} \int \mathrm{d}\mu \left( \phi , \bar{\phi }\right) e^{ - \frac{1}{2}\log \left( 1-4 \lambda \bar{\phi } \phi \right) } , \end{aligned}$$
(6.6)
$$\begin{aligned} G^c_{2,1} (\lambda )= & {} 1 - \frac{\lambda }{Z_2(\lambda )}\int \mathrm{d}\mu \left( \phi ,\bar{\phi }\right) \frac{4 \bar{\phi } \phi }{1+ 4\lambda \bar{\phi } \phi } e^{ - \frac{1}{2}\log \left( 1-4 \lambda \bar{\phi } \phi \right) } \end{aligned}$$
(6.7)
$$\begin{aligned}= & {} 1 - 4\lambda + \cdots . \end{aligned}$$
(6.8)

We recover the familiar logarithmic form of the action and resolvent of the intermediate field theory. However, our LVR representation is not the intermediate field representation. Indeed, in the LVR representation the argument of the log is quadratic in complex fields similar to the initial fields although it would be linear in the single real field \(\sigma \) of the intermediate field representation. We should rather think to the fields of the LVR as what remains of the initial fields after having forced integration of one particular marked \(\bar{\phi }\) field per vertex.

1.2 The \((\bar{\phi } \phi )^3\) theory

In this case, \(g= (-\lambda )^{\frac{1}{3}} = e^{i\pi /3 } \lambda ^{1/3}\), \(\lambda = - g^3\) and \(z = g^3 (\bar{\phi } \phi )^2 = - \lambda (\bar{\phi } \phi )^2 \). Equation (2.14) is now

$$\begin{aligned} zT_3^3(z) -T_3(z) +1 =0 . \end{aligned}$$
(6.9)

which is soluble by radicals. Introducing

$$\begin{aligned} u:= - \frac{27 z}{4} = -\frac{27 }{4}g^3 \left( \bar{\phi } \phi \right) ^2 = \frac{27 }{4}\lambda \left( \bar{\phi } \phi \right) ^2, \end{aligned}$$
(6.10)

Cardano’s solution is

$$\begin{aligned} T_3(z) =\frac{\Delta _+(u) - \Delta _{-}(u)}{\sqrt{-3z}} = 1 +z + 3z^2 + \cdots , \end{aligned}$$
(6.11)

where

$$\begin{aligned} \Delta _\pm (u) := \biggl (\sqrt{1 +u} \pm \sqrt{u} \biggr )^{1/3} = 1 \pm \frac{1}{3} \sqrt{u} + \frac{u}{18} \mp \frac{4 u^{3/2}}{81} - \frac{35u^2}{1944} + \cdots .\nonumber \\ \end{aligned}$$
(6.12)

Defining \(h (u) := \frac{1}{ \sqrt{1 +u}}\), we can compute the derivatives

$$\begin{aligned} \Delta '_\pm =\frac{\mathrm{d}}{\mathrm{d}u}\Delta _\pm (u)= & {} \frac{1}{6} \biggl ((1 + u)^{-1/2} \pm u^{-1/2} \biggr ) \biggl (\sqrt{1 + u} \pm \sqrt{u} \biggr )^{-2/3}\nonumber \\= & {} \pm \frac{1}{6\sqrt{u(1+u)}} \Delta _\pm (u) = \pm \frac{h }{6\sqrt{u}} \Delta _\pm (u) . \end{aligned}$$
(6.13)

Hence

$$\begin{aligned} zT_3'(z) =\frac{27 \sqrt{-z}}{4 \sqrt{3}}\left[ \Delta '_+(u) - \Delta '_{-}(u)\right] - \frac{1}{2\sqrt{-3z}}\left[ \Delta _+ (u) - \Delta _{-}(u)\right] . \end{aligned}$$
(6.14)

(2.16) gives

$$\begin{aligned} F_{3}= & {} \sum _n {{3n}\atopwithdelims (){n}} z^n = 2z T_3' +T_3 = h \frac{ \Delta _+ + \Delta _{-} }{2} , \end{aligned}$$
(6.15)
$$\begin{aligned} S_{3}= & {} \log F_3 = -\frac{1}{2} \log (1+u) + \log \frac{ \Delta _+ + \Delta _{-} }{2} \end{aligned}$$
(6.16)

The u derivatives of \(S_3\) give access to its g derivatives since \(u= -\frac{27 }{4}g^3 (\bar{\phi } \phi )^2 \), hence

$$\begin{aligned} \frac{\partial u}{\partial g} = -\frac{81 }{4}g^2 \left( \bar{\phi } \phi \right) ^2 . \end{aligned}$$
(6.17)

For instance,

$$\begin{aligned} \frac{\partial S_3}{\partial g}= & {} \frac{81 g^2 \left( \bar{\phi } \phi \right) ^2}{4} \biggl (\frac{1}{2(1 + u)} -\frac{ \Delta '_+ + \Delta '_-}{ \Delta _+ + \Delta _-}\biggr ) \nonumber \\= & {} \frac{81 g^2 \left( \bar{\phi } \phi \right) ^2}{8} \biggl (h^2 - \frac{h }{3\sqrt{u}} \frac{ \Delta _+ - \Delta _-}{ \Delta _+ + \Delta _-}\biggr ). \end{aligned}$$
(6.18)

We remark that the quotient \(\frac{ \Delta _+ - \Delta _-}{ \Delta _+ + \Delta _-}= \frac{A-B}{A+B}\) for \(A = \Delta _+ \), \(B= \Delta _- \) simplifies, using that \((A+B)(A^2 - AB + B^2) = A^3 + B^3\) and \((A-B)(A^2 - AB + B^2) = A^3 - B^3 -2AB(A-B)\). Remarking that in our case \(AB = \Delta _+ \Delta _-= 1\), we find

$$\begin{aligned} \frac{ \Delta _+ - \Delta _-}{ \Delta _+ + \Delta _-}= & {} h \left[ \sqrt{u} - ( \Delta _+ - \Delta _-)\right] \end{aligned}$$
(6.19)
$$\begin{aligned} \frac{\partial S_3}{\partial g}= & {} \frac{81 g^2 \left( \bar{\phi } \phi \right) ^2}{8} \biggl (h^2 - \frac{h^2 }{3\sqrt{u}} \left[ \sqrt{u} - ( \Delta _+ - \Delta _-)\right] \biggr )\nonumber \\= & {} \frac{81 g^2 \left( \bar{\phi } \phi \right) ^2}{8} \biggl [\frac{2}{3} h^2 + \frac{h^2 }{3\sqrt{u}} ( \Delta _+ - \Delta _-) \biggr ]\nonumber \\= & {} \frac{27 g^2 \left( \bar{\phi } \phi \right) ^2}{4 (1+u)} \biggl [ 1 + \frac{ \Delta _+ - \Delta _- }{2 \sqrt{u}} \biggr ] \end{aligned}$$
(6.20)

from which we find

$$\begin{aligned} G^c_{3,1} (\lambda )= & {} 1 + \frac{g}{Z_3(\lambda )}\int \mathrm{d}\mu \left( \phi ,\bar{\phi }\right) \frac{\partial S_3 }{\partial g} e^{S_3}\nonumber \\= & {} 1 - \frac{27 \lambda }{4Z_3(\lambda )}\int \mathrm{d}\mu \left( \phi ,\bar{\phi }\right) \frac{\left( \bar{\phi } \phi \right) ^2}{1+u} \biggl [ 1 + \frac{ \Delta _+ - \Delta _- }{2 \sqrt{u}} \biggr ] e^{S_3}\nonumber \\= & {} 1 - 18 \lambda +\cdots . \end{aligned}$$
(6.21)

1.3 The \((\bar{\phi } \phi )^4\) theory

In this case, \(g= (-\lambda )^{\frac{1}{4}} = e^{i\pi /4 } \lambda ^{1/4}\), \(\lambda = - g^4\) and \(z = g^4 (\bar{\phi } \phi )^3 = - \lambda (\bar{\phi } \phi )^3 \). Equation (2.14) is now

$$\begin{aligned} zT_4^4(z) -T_4(z) +1 =0 . \end{aligned}$$
(6.22)

which is still soluble by radicals. Denoting

$$\begin{aligned} v= \frac{z^{1/3}}{ 2^{1/3} } \left[ \left( 1+\sqrt{ 1 - \frac{2^8}{3^3} z } \right) ^{1/3} + \left( 1 -\sqrt{1 - \frac{2^8}{3^3} z} \right) ^{1/3} \right] , \end{aligned}$$
(6.23)

then

$$\begin{aligned} T_4(z)= \frac{ (1+4v)^{1/4} - \bigl [2-(1+4v)^{1/2} \bigr ]^{1/2} }{2 (vz)^{1/4}}. \end{aligned}$$
(6.24)

We can then compute

$$\begin{aligned} F_{4}= & {} \frac{T_4}{4 - 3T_4} = 3z T_4' +T_4 \nonumber \\= & {} \frac{ (1+4v)^{1/4} - \bigl [2-(1+4v)^{1/2} \bigr ]^{1/2} }{8 (vz)^{1/4} - 3 \bigl [ (1+4v)^{1/4} - \bigl [2-(1+4v)^{1/2} \bigr ]^{1/2}\bigr ] } \end{aligned}$$
(6.25)

from which \(S_4 = \log F_4\) can be derived explicitly.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rivasseau, V. Loop vertex expansion for higher-order interactions. Lett Math Phys 108, 1147–1162 (2018). https://doi.org/10.1007/s11005-017-1037-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-017-1037-9

Keywords

Mathematics Subject Classification

Navigation