Skip to main content
Log in

On a Graph Theoretic Formula of Gammelgaard for Berezin–Toeplitz Quantization

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We give a proof of (a slightly refined version of) a graph theoretic formula due to Gammelgaard, Karabegov and Schlichenmaier for Berezin–Toeplitz quantization on Kähler manifolds. We obtain the formula by inverting the Berezin transform using a composition formula for the ring of differential operators encoded by linear combinations of strongly connected graphs. The same method is also used to identify the dual Karabegov–Bordemann–Waldmann star product. Our proof has the merit of giving more insight into Karabegov–Schlichenmaier’s identification theorem (Karabegov in J Reine Angew Math 540:49–76, 2001) that the Karabegov classifying form of the Berezin and Berezin–Toeplitz star products are, respectively, obtained by deforming the Kähler metric along the Ricci curvature and the logarithm of the Bergman kernel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersen J.E.: Asymptotic faithfulness of the quantum SU(n) representations of the mapping class groups. Ann. Math. 163, 347–368 (2006)

    Article  MATH  Google Scholar 

  2. Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., Sternheimer, D.: Deformation theory and quantization, I, II. Ann. Phys. 111, 61–110; 111–151 (1978)

    Google Scholar 

  3. Berezin F.A.: Quantization. Math. USSR Izvest. 8, 1109–1163 (1974)

    Article  Google Scholar 

  4. Berezin F.A.: Quantization in complex symmetric spaces. Math. USSR Izvest. 9, 341–379 (1975)

    Article  Google Scholar 

  5. Bordemann M., Meinrenken E., Schlichenmaier M.: Toeplitz quantization of Kähler manifolds and \({gl(N), N \rightarrow \infty}\) limits. Commun. Math. Phys. 165(2), 281–296 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Bordemann M., Waldmann S.: A Fedosov star product of the Wick type for Kähler manifolds. Lett. Math. Phys. 41, 243–253 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cahen M., Gutt S., Rawnsley J.: Quantization of Kähler manifolds III. Lett. Math. Phys. 30, 291–305 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Charles L.: Berezin–Toeplitz operators, a semi-classical approach. Commun. Math. Phys. 239, 1–28 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Dai X., Liu K., Ma X.: On the asymptotic expansion of Bergman kernel. J. Differ. Geom. 72(1), 1–41 (2006)

    MathSciNet  MATH  Google Scholar 

  10. Dito, G., Sternheimer, D.: Deformation quantization: genesis, developments, and metamorphoses. In: IRMA Lectures in Math. Theoret. Phys., vol. 1, pp. 9–54. Walter de Gruyter, Berlin (2002)

  11. Douglas M., Klevtsov S.: Bergman kernel from path integral. Commun. Math. Phys. 293, 205–230 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Engliš M.: Berezin quantization and reproducing kernels on complex domains. Trans. Am. Math. Soc. 348, 411–479 (1996)

    Article  MATH  Google Scholar 

  13. Engliš M.: The asymptotics of a Laplace integral on a Kähler manifold. J. Reine Angew. Math. 528, 1–39 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Engliš M.: Weighted Bergman kernels and quantization. Commun. Math. Phys. 227, 211–241 (2002)

    Article  ADS  MATH  Google Scholar 

  15. Fedosov B.: A simple geometric construction of deformation quantization. J. Differ. Geom. 40, 213–238 (1994)

    MathSciNet  MATH  Google Scholar 

  16. Gammelgaard, N.: A universal formula for deformation quantization on Kähler manifolds. arixv:1005.2094

  17. Hsiao, C-Y., Marinescu, G.L.: Asymptotics of spectral function of lower energy forms and Bergman kernel of semi-positive and big line bundles. arXiv:1112.5464

  18. Karabegov A.: Deformation quantizations with separation of variables on a Kähler manifold. Commun. Math. Phys. 180, 745–755 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Karabegov A.: On the canonical normalization of a trace density of deformation quantization. Lett. Math. Phys. 45, 217–228 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Karabegov, A.: On Fedosov’s approach to deformation quantization with separation of variables. In: Proceedings of the Conference, Moshe Flato 1999, vol. II, pp. 167–176. Kluwer, Dordrecht (2000)

  21. Karabegov A.: A formal model of Berezin–Toeplitz quantization. Commun. Math. Phys. 274, 659–689 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Karabegov, A.: An explicit formula for a star product with separation of variables. arXiv:1106.4112

  23. Karabegov A.: An invariant formula for a star product with separation of variables. J. Geom. Phys. 62, 2133–2139 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Karabegov, A.: On Gammelgaard’s formula for a star product with separation of variables. arXiv:1205.5236

  25. Karabegov A., Schlichenmaier M.: Identification of Berezin–Toeplitz deformation quantization. J. Reine Angew. Math. 540, 49–76 (2001)

    MathSciNet  MATH  Google Scholar 

  26. Kontsevich M.: Deformation quantization of Poisson manifolds. Lett. Math. Phys. 66(3), 157–216 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Loi A.: The Tian–Yau–Zelditch asymptotic expansion for real analytic Kähler metrics. Int. J. Geom. Methods Modern Phys. 1, 253–263 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Liu, C., Lu, Z.: On the asymptotic expansion of Tian-Yau-Zelditch. arixv:1105.0221

  29. Ma X., Marinescu G.: Berezin–Toeplitz quantization of Kähler manifolds. J. Reine Angew. Math. 662, 1–56 (2012)

    MathSciNet  MATH  Google Scholar 

  30. Ma X., Marinescu G.: Toeplitz operators on symplectic manifolds. J. Geom. Anal. 18(2), 565–611 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Neumaier N.: Universality of Fedosov’s construction for star products of Wick type on pseudo-Kähler manifolds. Rep. Math. Phys. 52, 43–80 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. Reshetikhin, N.: Takhtajan, L.: Deformation quantization of Kähler manifolds. L.D. Faddeev’s Seminar on Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, vol. 201, pp. 257–276. Amer. Math. Soc., Providence (2000)

  33. Schlichenmaier, M.: Deformation quantization of compact Kähler manifolds by Berezin–Toeplitz quantization. In: Conférence Moshé Flato (Dijon, 1999), vol. II, pp. 289–306. Kluwer, Dordrecht (2000)

  34. Schlichenmaier M.: Berezin–Toeplitz quantization of the moduli space of flat SU(N) connections. J. Geom. Symmetry Phys. 9, 33–44 (2007)

    MathSciNet  MATH  Google Scholar 

  35. Schlichenmaier, M.: Berezin–Toeplitz quantization for compact Kähler manifolds. A review of results. Adv. Math. Phys. 2010, Article ID 927280 (2010)

  36. Schlichenmaier, M.: Berezin–Toeplitz Quantization and Star Products for Compact Kähler Manifolds. arXiv:1202.5927

  37. Xu H.: A closed formula for the asymptotic expansion of the Bergman kernel. Commun. Math. Phys. 314, 555–585 (2012)

    Article  ADS  MATH  Google Scholar 

  38. Xu H.: An explicit formula for the Berezin star product. Lett. Math. Phys. 101, 239–264 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. Zelditch S.: Szegö kernel and a theorem of Tian. Int. Math. Res. Not. 6, 317–331 (1998)

    Article  MathSciNet  Google Scholar 

  40. Zelditch, S.: Quantum maps and automorphisms. In: The Breadth of Symplectic and Poisson Geometry. Progress in Mathematics, vol. 232, pp. 623–654. Birkhäuser, Boston (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, H. On a Graph Theoretic Formula of Gammelgaard for Berezin–Toeplitz Quantization. Lett Math Phys 103, 145–169 (2013). https://doi.org/10.1007/s11005-012-0585-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-012-0585-2

Mathematics Subject Classification (2010)

Keywords

Navigation