Skip to main content
Log in

Isotropic Covariance Matrix Functions On All Spheres

  • Published:
Mathematical Geosciences Aims and scope Submit manuscript

Abstract

This paper reviews and introduces characterizations of the covariance function on all spheres that is isotropic and continuous, and characterizations of the covariance matrix function on all spheres whose entries are isotropic and continuous. These characterizations are used to derive some covariance (matrix) structures on all spheres, with certain polynomials obtained, besides some rational, (negative) power, and logarithmic models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bapat RB, Raghavan TES (1997) Nonnegative matrices and applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Bingham NH (1973) Positive definite functions on spheres. Proc Camb Phil Soc 73:145–156

    Article  Google Scholar 

  • Cheng D, Xiao Y (2014) Excursion probability of Gaussian random fields on sphere. arXiv:1401.5498v1

  • Christensen JPR, Ressel P (1978) Functions operating on positive definite matrices and a theorem of Schoenberg. Trans Am Math Soc 243:89–95

    Article  Google Scholar 

  • Cressie N, Johannesson G (2008) Fixed rank kriging for very large spatial data sets. J R Stat Soc Ser B 70:209–226

    Article  Google Scholar 

  • Dimitrakopoulos RD, Mustapha H, Gloaguen E (2010) High-order statistics of spatial random fields: exploring spatial cumulants for modeling complex non-Gaussian and non-linear phenomena. Math Geosci 42:65–99

    Article  Google Scholar 

  • Du J, Ma C (2011) Spherically invariant vector random fields in space and time. IEEE Trans Signal Proc 59:5921–5929

    Article  Google Scholar 

  • Du J, Ma C, Li Y (2013) Isotropic variogram matrix functions on spheres. Math Geosci 45:341–357

    Article  Google Scholar 

  • Feller W (1971) An introduction to probability theory and its applications, vol II, 2nd edn. Wiley, New York

  • Gangolli R (1967a) Abstract harmonic analysis and Lévy’s Brownian motion of several parameters. In: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, vol II, Pt. 1. University of California Press, Berkeley, pp 13–30

  • Gangolli R (1967b) Positive definite kernels on homogeneous spaces and certain stochastic processes related to Lévy’s Brownian motion of several parameters. Ann Inst H Poincaré B 3:121–226

    Google Scholar 

  • Gaspari G, Cohn SE (1999) Construction of correlations in two and three dimensions. Q J R Meteorol Soc 125:723–757

    Article  Google Scholar 

  • Gaspari G, Cohn SE, Guo J, Pawson S (2006) Construction and application of covariance functions with variable length-fields. Q J R Meteorol Soc 132:1815–1838

    Article  Google Scholar 

  • Gneiting T (2013) Strictly and non-strictly positive definite functions on spheres. Bernoulli 19:1327–1349

    Article  Google Scholar 

  • Gradshteyn IS, Ryzhik IM (2007) Tables of integrals, series, and products, 7th edn. Academic Press, Amsterdam

    Google Scholar 

  • Hannan EJ (1970) Multiple time series. Wiley, New York

    Book  Google Scholar 

  • Huang C, Zhang H, Robeson SM (2011) On the validity of commonly used covariance and variogram functions on the sphere. Math Geosci 43:721–733

    Article  Google Scholar 

  • Johns RH (1963a) Stochastic processes on a sphere. Ann Math Stat 34:213–218

    Article  Google Scholar 

  • Johns RH (1963b) Stochastic processes on a sphere as applied to meteorological 500-millibar forecasts. In: Proceedings of symposium on time series analysis. Wiley, New York, pp 119–124

  • Jun M, Stein M (2007) An approach to producing space-time covariance functions on sphere. Technometrics 49:468–479

    Article  Google Scholar 

  • Leonenko N, Sakhno L (2012) On spectral representation of tensor random fields on the sphere. Stoch Anal Appl 31:167–182

    Google Scholar 

  • Ma C (2011a) Vector random fields with second-order moments or second-order increments. Stoch Anal Appl 29:197–215

    Article  Google Scholar 

  • Ma C (2011b) Covariance matrix functions of vector \(\chi ^2\) random fields in space and time. IEEE Trans Commun 59:2254–2561

    Article  Google Scholar 

  • Ma C (2012) Stationary and isotropic vector random fields on spheres. Math Geosci 44:765–778

    Article  Google Scholar 

  • Ma C (2013) K-distributed vector random fields in space and time. Stat Probab Lett 83:1143–1150

    Article  Google Scholar 

  • Ma C (2014) Isotropic covariance matrix polynomials on spheres (manuscript)

  • Marinucci D, Peccati G (2011) Random fields on the sphere: representation, limit theorems and cosmological applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Matheron G (1989) The internal consistency of models in geostatistics. In: Armstrong M (ed) Geostatistics, vol 1. Kluwer Academic Publishers, Netherlands, pp 21–38

  • Minozzo M, Ferracuti L (2012) On the existence of some skew-normal stationary processes. Chilean J Stat 3:159–172

    Google Scholar 

  • McLeod MG (1986) Stochastic processes on a sphere. Phys. Earth Plan. Interiors 43:283–299

    Article  Google Scholar 

  • Roy R (1973) Estimation of the covariance function of a homogeneous process on the sphere. Ann Stat 1:780–785

    Article  Google Scholar 

  • Roy R (1976) Spectral analysis for a random process on the sphere. Ann Inst Stat Math 28:91–97

    Article  Google Scholar 

  • Schoenberg I (1938) Metric spaces and completely monotone functions. Ann Math 39:811–841

    Article  Google Scholar 

  • Schoenberg I (1942) Positive definite functions on spheres. Duke Math J 9:96–108

    Article  Google Scholar 

  • Weaver A, Courtier P (2001) Correlation modelling on the sphere using a generalized diffusion equation. Q J R Meteorol Soc 127:1815–1846

    Article  Google Scholar 

  • Widder DV (1946) The Laplace transform. Princeton University Press, Princeton

    Google Scholar 

  • Yadrenko AM (1983) Spectral theory of random fields. Optimization Software, New York

    Google Scholar 

  • Yaglom AM (1987) Correlation theory of stationary and related random functions, vol I. Springer, New York

Download references

Acknowledgments

This work was supported in part by U.S. Department of Energy under Grant DE-SC0005359. The author wishes to thank the reviewers for the valuable comments and suggestions which helped to improve the presentation of this paper tremendously.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunsheng Ma.

Appendices

Appendix A: Proof of Theorem 1

Statement (i) in Theorem 1 implying (ii) was shown by Schoenberg (1942), and Bingham (1973) proved that condition (ii) was sufficient for statement (i); see also Christensen and Ressel (1978).

Under the assumption (ii), (iii) is established after defining

$$\begin{aligned} g(x) = \sum _{n=0}^\infty b_n x^n, \quad -1 \le x \le 1, \end{aligned}$$

which is continuous on \([-1, 1]\) and absolutely monotone on \([0, 1]\). Clearly, both \(g(x)+g(-x)\) and \(g(x)-g(-x)\) are absolutely monotone on \([0, 1]\).

Conversely, let \(g(x)\) satisfy the conditions in (iii). Since both \(g(x)+g(-x)\) and \(g(x)-g(-x)\) are absolutely monotone on \([0, 1]\), they possess the Taylor series

$$\begin{aligned} g(x)+g(-x) = \sum _{n=0}^\infty \frac{b_{1n}}{n!} x^n, \quad 0 \le x \le 1, \end{aligned}$$

and

$$\begin{aligned} g(x)-g(-x) = \sum _{n=0}^\infty \frac{b_{2n}}{n!} x^n, \quad 0 \le x \le 1, \end{aligned}$$

respectively, where

$$\begin{aligned} b_{1n}&= \left. \frac{d^n}{dx^n} (g(x)+g(-x)) \right| _{x=0} = \left\{ \begin{array}{ll} 2 g^{(n)}(0), &{} \quad n {\hbox { is zero or even}}, \\ 0, &{} \quad n {\hbox { is odd}}, \end{array} \right. \\ b_{2n}&= \left. \frac{d^n}{dx^n} (g(x)-g(-x)) \right| _{x=0} = \left\{ \begin{array}{ll} 0, &{} \quad n {\hbox { is zero or even}}, \\ 2 g^{(n)}(0), &{} \quad n {\hbox { is odd}}, \end{array} \right. \end{aligned}$$

according to Theorem 3a of Widder (1946), page 146. Thus,

$$\begin{aligned} g(x)&= \frac{ g(x)+g(-x)}{2} + \frac{ g(x)-g(-x)}{2} = \sum _{n=0}^\infty \frac{b_{1n}+b_{2n}}{2 n!} x^n\\&= \sum _{n=0}^\infty b_n x^n, \quad 0 \le x \le 1,\\ g(-x)&= \frac{ g(x)+g(-x)}{2} - \frac{ g(x)-g(-x)}{2}\\&= \sum _{n=0}^\infty \frac{b_{1n}-b_{2n}}{2 n!} x^n = \sum _{n=0}^\infty b_n (-x)^n, \quad 0 \le x \le 1, \end{aligned}$$

where

$$\begin{aligned} b_n = \frac{g^{(n)}(0)}{n!}, \quad n = 0, 1, \ldots , \end{aligned}$$

is a summable sequences of nonnegative numbers. In other words, \(g(x)\) possesses the Taylor series

$$\begin{aligned} g(x) = \sum _{n=0}^\infty \frac{g^{(n)}(0)}{n!} x^n, \quad -1 \le x \le 1, \end{aligned}$$

so that \(C(\vartheta ) = g( \cos \vartheta )\) is of the form (3) in Statement (ii).

To establish the equivalency between (iii) and (iv), we apply identity (14) to rewrite \(C(\vartheta )\) as

$$\begin{aligned} C(\vartheta ) = C \left( \frac{\pi }{2} -\arcsin (\cos \vartheta ) \right) , \quad \vartheta \in [0, \pi ], \end{aligned}$$

so that \(g(x)\) is defined by

$$\begin{aligned} g(x) = C \left( \frac{\pi }{2} -\arcsin x \right) , \quad x \in [-1, 1]. \end{aligned}$$

Appendix B: Proof of Theorem 2

  1. (i)

    Recall that the composition of two absolutely monotone functions is also absolutely monotone (Theorem 2a of Widder (1946), page 145). As the composition of two absolutely monotone functions \(C\left( \frac{\pi }{2}-x \right) +C\left( \frac{\pi }{2}+x \right) \) and \(\arcsin x\), \(C\left( \frac{\pi }{2}-\arcsin x \right) +C\left( \frac{\pi }{2}+\arcsin x \right) \) is absolutely monotone on \([0, 1]\). Similarly, \(C\left( \frac{\pi }{2}-\arcsin x \right) -C\left( \frac{\pi }{2}+\arcsin x \right) \) is absolutely monotone on \([0, 1]\).

  2. (ii)

    It suffices to verify that the conditions of Theorem 2 (i) are satisfied. Since \(C(\vartheta )\) is completely monotone on \([0, \pi ]\), for each natural number \(n\), \((-1)^{n} C^{(n)}(\vartheta )\) is a nonnegative and decreasing function on \([0, \pi ]\), and thus

    $$\begin{aligned} (-1)^n C^{(n)} \left( \frac{\pi }{2} -\vartheta \right) -(-1)^n C^{(n)} \left( \frac{\pi }{2}+\vartheta \right) \ge 0, \quad 0 \le \vartheta \le \frac{\pi }{2}. \end{aligned}$$

    For an even \(n\), we obtain

    $$\begin{aligned}&\frac{d^n}{d x^n} \left( C \left( \frac{\pi }{2} -x \right) - C \left( \frac{\pi }{2} +x \right) \right) \\&\quad = (-1)^n C^{(n)} \left( \frac{\pi }{2} -x \right) - C^{(n)} \left( \frac{\pi }{2}+x \right) \\&\quad = (-1)^n C^{(n)} \left( \frac{\pi }{2} -x \right) - (-1)^n C^{(n)} \left( \frac{\pi }{2}+x \right) \\&\quad \ge 0, \\&\frac{d^n}{d x^n} \left( C \left( \frac{\pi }{2} -x \right) + C \left( \frac{\pi }{2} +x \right) \right) \\&\quad = (-1)^n C^{(n)} \left( \frac{\pi }{2} -x \right) + C^{(n)} \left( \frac{\pi }{2}+x \right) \\&\quad = \left\{ (-1)^n C^{(n)} \left( \frac{\pi }{2} -x \right) - (-1)^n C^{(n)} \left( \frac{\pi }{2}+x \right) \right\} +2 C^{(n)} \left( \frac{\pi }{2}+x \right) \\&\quad \ge 0, \quad 0 \le x \le \frac{\pi }{2}, \end{aligned}$$

    and for an odd \(n\),

    $$\begin{aligned}&\frac{d^n}{d x^n} \left( C \left( \frac{\pi }{2} -x \right) - C \left( \frac{\pi }{2} +x \right) \right) \\&\quad = \left\{ (-1)^n C^{(n)} \left( \frac{\pi }{2} \!-\!x \right) \!-\! (-1)^n C^{(n)} \left( \frac{\pi }{2}\!+\!x \right) \right\} + 2 (-1)^n C^{(n)} \left( \frac{\pi }{2}+x \right) \ge 0, \\&\frac{d^n}{d x^n} \left( C \left( \frac{\pi }{2} -x \right) + C \left( \frac{\pi }{2} +x \right) \right) \\&\quad = (-1)^n C^{(n)} \left( \frac{\pi }{2} -x \right) - (-1)^n C^{(n)} \left( \frac{\pi }{2}+x \right) \ge 0, \quad 0 \le x \le \frac{\pi }{2}. \end{aligned}$$

    Thus, both \(C \left( \frac{\pi }{2} -x \right) - C \left( \frac{\pi }{2} +x \right) \) and \(C \left( \frac{\pi }{2} -x \right) + C \left( \frac{\pi }{2} +x \right) \) are absolutely monotone on \(\left[ 0, \frac{\pi }{2} \right] \).

Appendix C: Proof of Theorem 3

  1. (i)

    It follows from the binomial theorem that

    $$\begin{aligned} C \left( \frac{\pi }{2} -x \right)&= \sum _{k=0}^p b_k \left( \frac{\pi }{2} -x \right) ^k \\&= \sum _{k=0}^p b_k \sum _{j=0}^k (-1)^j {k \atopwithdelims ()j} \left( \frac{\pi }{2} \right) ^{k-j} x^j \\&= \sum _{k=0}^p a_k x^k, \quad x \in \left[ - \frac{\pi }{2}, \frac{\pi }{2} \right] , \end{aligned}$$

    and

    $$\begin{aligned} C \left( \frac{\pi }{2} +x \right)&= \sum _{k=0}^p (-1)^k a_k x^k, \quad x \in \left[ - \frac{\pi }{2}, \frac{\pi }{2} \right] , \end{aligned}$$

    where

    $$\begin{aligned} a_k = (-1)^k \sum _{j=k}^p b_j {j \atopwithdelims ()k} \left( \frac{\pi }{2} \right) ^{j-k}, \quad k =0, 1, \ldots , p. \end{aligned}$$

    Clearly,

    $$\begin{aligned} a_k = \frac{1}{k!} \frac{d^k}{dx^k} C \left( \frac{\pi }{2}- x \right) {\Big |}_{x=0}, \quad k = 1, \ldots , p. \end{aligned}$$

    Under the assumption (7), \(a_k\), \( a_k+(-1)^k a_k \) and \( a_k-(-1)^ka_k\) (\(k=0, 1, \ldots , p\)) are nonnegative, so that

    $$\begin{aligned} C \left( \frac{\pi }{2} -x \right) + C \left( \frac{\pi }{2} + x \right) = \sum _{k=0}^p (a_k+(-1)^k a_k) x^k \end{aligned}$$

    and

    $$\begin{aligned} C \left( \frac{\pi }{2} -x \right) - C \left( \frac{\pi }{2} + x \right) = \sum _{k=0}^p (a_k-(-1)^k a_k) x^k \end{aligned}$$

    are absolutely monotone on \(\left[ 0, \frac{\pi }{2} \right] \). By Theorem 2 (i), \(C(\vartheta )\) is a covariance function on \(\mathbb {S}^\infty \).

  2. (ii)

    Let \(C(\vartheta )\) be a covariance function on \(\mathbb {S}^\infty \). By Corollary 2,

    $$\begin{aligned} g(x) = C \left( \frac{\pi }{2}- \arcsin x \right) = \sum _{k=0}^p a_k (\arcsin x)^k, \quad x \in [-1, 1], \end{aligned}$$

    is nonnegative, nondecreasing, and convex on \([0, 1]\), so that \(g(0) \ge 0, \) \(g^{(k)} (0) \ge 0, k =1, 2.\) The first- and second-order derivatives of \(g(x)\) are

    $$\begin{aligned} g'(x)&= (1-x^2)^{-\frac{1}{2}} \sum _{k=1}^p k a_k (\arcsin x)^{k-1}, \\ g''(x)&= x (1\!-\!x^2)^{\!-\frac{3}{2}} \!\!\sum _{k=1}^p k a_k (\arcsin x)^{k\!-\!1} \!+\! (1-x^2)^{-1} \sum _{k=2}^p k (k\!-\!1) a_k (\arcsin x)^{k\!-\!2}. \end{aligned}$$

    Thus, inequalities (8) follow from

    $$\begin{aligned} 0&\le g(0) = a_0, \\ 0&\le g'(0) = a_1, \\ 0&\le g''(0) =2 a_2. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, C. Isotropic Covariance Matrix Functions On All Spheres. Math Geosci 47, 699–717 (2015). https://doi.org/10.1007/s11004-014-9566-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11004-014-9566-6

Keywords

Navigation