Marine Geophysical Researches

, Volume 25, Issue 3–4, pp 221–231 | Cite as

An Interpretation of the Seafloor Spreading History of the West Enderby Basin between Initial Breakup of Gondwana and Anomaly C34

  • Yoshifumi Nogi
  • Kumiko Nishi
  • Nobukazu Seama
  • Yoichi Fukuda


The seafloor spreading evolution in the Southern Indian Ocean is key to understanding the initial breakup of Gondwana. We summarize the structural lineaments deduced from the GEOSAT 10 Hz sampled raw altimetry data as well as satellite derived gravity anomaly map and the magnetic anomaly lineation trends from vector magnetic anomalies in the West Enderby Basin, the Southern Indian Ocean. The gravity anomaly maps by both Sandwell and Smith 1997, J. Geophys. Res. 102, 10039–10054 and 10 Hz raw altimeter data show almost the same general trends. However, curved structural trends, which turn from NNW–SSE in the south to NNE–SSW in the north, are detected only from gravity anomaly maps by 10 Hz raw altimeter data just to the east of Gunnerus Ridge. NNE–SSW structural trends and magnetic anomaly lineation trends that are perpendicular to them are observed between the Gunnerus Ridge and the Conrad Rise. To the west of Gunnerus Ridge, structural elements trend NNE–SSW and magnetic polarity changes are normal to them. In contrast, almost NNW–SSE structural trends and ENE–WSW magnetic polarity reversal strikes are dominant to the east of Gunnerus Ridge. Curved structural trends, which turn from WNW–ESE direction in the south to NNE–SSW direction in the west, and magnetic polarity reversal strikes that are almost perpendicular to them are observed just south of Conrad Rise. The magnetic polarity reversals may be parts of the Mesozoic magnetic anomaly sequence that formed along side of the structural lineaments before the long Cretaceous normal polarity superchron. Curved structural trends, detected only from gravity anomaly maps by 10 Hz raw altimeter data, most likely indicate slight changes in spreading direction from an initial NNW–SSE direction to NNE–SSW. Our results also suggest that these curved structural trends are fracture zones that formed during initial breakup of Gondwana.


gravity anomaly magnetic anomaly Gondwana seafloor spreading breakup structural lineament 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bergh, H.W. 1977Mesozoic seafloor off Dronning Maud Land, AntarcticaNature269686687CrossRefPubMedGoogle Scholar
  2. Cheney R.E., Doyle N.S., Douglas B.C., Agreen R.W., Miller L., Timmerman D.L., McAdoo D.C. (1991) The Complete Geosat Altimeter GDR Handbook. NOAA Manual NOS NGS 7,National Ocean Service, Rockville,MDGoogle Scholar
  3. Diament, M., Goslin, J. 1986Emplacement of the Marion Defresne, Lena, Ob Seamounts (South Indian Ocean) from a study of isostasyTectonophysics121253262CrossRefGoogle Scholar
  4. Jokat W., Boebel T., König M., Meyer U. (2003) Timing and geometry of early Gondwana breakup. J.Geophys.Res.108(B9), 2428, doi: 10.1029/2002JB001802Google Scholar
  5. Laske, G. and Masters, G., 1997, A global digital map of sediment thickness. EOS Trans. AGU 78, F483.Google Scholar
  6. Lemoine, F.G., Smith, D.E., Kunz, L., Smith, R., Pavlis, E.C., Pavlis, N.K., Klosko, S.M., Chinn, D.M., Torrence, T.M., Williamson, R.G., Cox, C.M., Rachlin, K.E., Wang, Y.M., Kenyon, S.C., Salman, R., Trimmer, R., Rapp, R.H., Nerem, R.S. 1997The Development of the NASA GSFC and NIMA Joint Geopotential ModelSegawa, al.,  eds. Gravity, Geoid and Marine Geodesy, International Association of Geodesy Symposia,Vol117.Springer-VerlagBerlin Heidelberg461469Google Scholar
  7. Livermore R.A., Hunter R.J. (1996) Mesozoic seafloor spreading in the southern Weddell Sea. In: Storey B.C., King E.C., Livermore R.A. (ed). Weddell Sea Tectonics and Gondwana Break-up, Geol. Soc. Spec. Pub. Vol. 108, pp. 227–241.Google Scholar
  8. Marks, K.M., Stock, J.M. 1997Early Tertiary gravity field reconstructions of the Southwest PacificEarth Planet. Sci. Lett152267274CrossRefGoogle Scholar
  9. McAdoo, D.C., Marks, K.M. 1992Gravity fields of the Southern ocean from geosat dataJ. Geophys. Res9732473260Google Scholar
  10. Müller, R.D., Gaina, C., Roest, W.R., Hansen, D.L. 2001A recipe for microcontinent formationGeology29203206CrossRefGoogle Scholar
  11. Müller, R.D., Royer, J.Y., Lawver, L.A. 1993Revised plate motions relative to the hotspots from combined Atlantic and Indian Ocean hotspot tracksGeology21275278CrossRefGoogle Scholar
  12. Nishi, K., Fukuda, Y. and Nogi, Y., 2004, Detection of seafloor structures in the West Enderby Basin, the Southern Indian Ocean. Submitted to Earth Planet. Sci. Lett.Google Scholar
  13. Nogi, Y., Kaminuma, K. 1999Vector magnetic anomalies in the West Enderby BasinKor. J. Polar Res.10117124Google Scholar
  14. Nogi, Y., Seama, N., Isezaki, N. and Fukuda, Y., 1996, Magnetic anomaly lineations and fracture zones deduced from vector magnetic anomalies in the West Enderby Basin, in Storey, B.C., King, E.C., and Livermore R.A. (eds.), Weddell Sea Tectonics and Gondwana Break-up, Geol. Soc. Spec. Pub. Vol. 108, pp. 265–273.Google Scholar
  15. Norton, I.O., Sclater, J.G. 1978A model for the evolution of the Indian Ocean and the breakup of GondwanalandJ. Geophys. Res.8468036830Google Scholar
  16. Ramana, M.V., Nair, R.R., Sarma, K.V.L.N.S., Ramprasad, T., Krishna, K.S., Subrahmanyam, V., D’Cruz, M., Subrahmanyam, C., Paul, J., Subrahmanyam, A.S., Chandra Sekhar, D.V. 1994Mesozoic anomalies in the Bay of BengalEarth Planet. Sci. Lett.121469475k.CrossRefGoogle Scholar
  17. Ramana, M.V., Ramprasad, T., Desa, M. 2001Seafloor spreading magnetic anomalies in the Enderby Basin, East AntarcticaEarth Planet. Sci. Lett191241255CrossRefGoogle Scholar
  18. Roeser, H.A., Fritsch, J. and Hinz, K. 1996, The development of the crust off Dronning Maud Land, East Antarctica, in Storey, B.C., King, E.C. and Livermore R.A. (eds.), Weddell Sea Tectonics and Gondwana Break-up, Geol. Soc. Spec. Pub. Vol. 108, pp. 243–264.Google Scholar
  19. Rogenhagen J. (2000) Interpretation of seismic and gravimetric data of the Weddell Sea, Antarctica. BerichtezurPolarforschung. 369Google Scholar
  20. Royer J.Y., Müller, R.D., Gahagan, L.D., Lawver, L.A., Mayes, C.L., Nurnberg, D. and Sclater, J.G., 1992, A global isochron chart. Tech. Rep. 117, Austin, Univ. of Tex. Inst. for Geophys.Google Scholar
  21. Royer, J.Y., Sandwell, T. 1989Evolution of the Eastern Indian Ocean since the Late Cretaceous: constraints from Geosat AltimetryJ. Geophys. Res941375513782Google Scholar
  22. Sandwell, D.T. 1992Antarctic marine gravity field from high-density satellite altimetryGeophys. J. Int109437448Google Scholar
  23. Sandwell, D.T., Smith, W.H.F. 1997Marine gravity anomaly from Geosat and ERS-1 satellite altimetryJ. Geophys. Res.1021003910054CrossRefGoogle Scholar
  24. Schlich, R. 1982The Indian Ocean: Aseismic ridges, spreading centers, and oceanic basinsNarin, A.E.Stheli, F.G. eds. The Oceanic Basins and Margins,Vol. 6.The Indian Ocean PlenumNew York51147Google Scholar
  25. Smith, W.H.F., Sandwell, D.T. 1994Bathymetric prediction from dense satellite altimetry and sparse shipboard bathymetryJ. Geophys. Res.992180321824CrossRefGoogle Scholar
  26. Tebbens, S.F., Cande, S.C. 1997Southeast Pacific tectonic evolution from early OligoceneJ. Geophys. Res.1021206112084CrossRefGoogle Scholar
  27. Terada, K., Fukuda, Y. 1997Applicability of 10 Hz satellite altimetry data to the Antarctic marginProc. NIPR Symp. Antarct. Geosci.102635Google Scholar
  28. Wessel, J.K., Smith, W.H.F. 1991Free software helps map and display dataEOS Trans. Am. Geophys. Union72445446Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Yoshifumi Nogi
    • 1
  • Kumiko Nishi
    • 2
  • Nobukazu Seama
    • 3
  • Yoichi Fukuda
    • 4
  1. 1.National Institute of Polar Research SokendaiTokyoJapan
  2. 2.Geographical Survey InstituteIbarakiJapan
  3. 3.Research Center for Inland SeasKobe UniversityHyogoJapan
  4. 4.Department of Geophysics, Graduate School of ScienceKyoto UniversityKyotoJapan

Personalised recommendations