Advertisement

Marine Geophysical Researches

, Volume 24, Issue 3–4, pp 345–357 | Cite as

Heat flux estimate of warm water flow in a low-temperature diffuse flow site, southern East Pacific Rise 17°25′ S

  • Shusaku Goto
  • Masataka Kinoshita
  • Kyohiko Mitsuzawa
Article

Abstract

A low-temperature diffuse flow site associated with abundant vent fauna was found by submersible observations on the southern East Pacific Rise at 17°25′ S in 1997. This site was characterized by thin sediment covered pillow and sheet lavas with collapsed pits up to ∼15 m in diameter. There were three warm water vents (temperature: 6.5 to 10.5 °C) within the site above which the vented fluids rise as plumes. To estimate heat flux of the warm water vents, a temperature logger array was deployed and the vertical temperature distribution in the water column up to 38 m above the seafloor was monitored. A stationary deep seafloor observatory system was also deployed to monitor hydrothermal activity in this site. The temperature logger array measured temperature anomalies, while the plumes from the vents passed through the array. Because the temperature anomalies were measured in only specific current directions, we identified one of the vents as the source. Heat flux from the vent was estimated by applying a plume model in crossflow in a density-stratified environment. The average heat flux from September 13 to October 18, 1997 was 39 MW. This heat flux is as same order as those of high-temperature black smokers, indicating that a large volume flux was discharged from the vent (1.9 m3/s). Previous observations found many similar warm water flow vents along the spreading axis between 17°20′ S–30′ S. The total heat flux was estimated to be at least a few hundred mega-watts. This venting style would contribute to form effluent hydrothermal plumes extended above the spreading axis.

Keywords

heat flux hydrothermal plume long-term monitoring southern East Pacific Rise warm water flow 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Auzende, J.-M., Ballu, V., Batiza, R., Bideau, D., Charlou, J.-L., Cormier, M.H., Fouquet, Y., Geistdoerfer, P., Lagabrielle, Y., Sinton, J., Spedea, P. 1996Recent tectonic, magnetic and hydrothermal activity on the East Pacific Rise between 17° S and 19° S: Submersible ObservationJ. Geophys. Res.1011799518010CrossRefGoogle Scholar
  2. Baker, E.T., Urabe, T. 1996Extensive distribution of hydrothermal plumes along the superfast spreading East Pacific Rise, 13°30′ S–18°40′ SJ. Geophys. Res.10186858695CrossRefGoogle Scholar
  3. Baker, E.T., German, C.R., Elderfield, H. 1995Hydrothermal plumes over spreading-center axes: Global distribution and geophysical inferencesHumphris, S.E.Zierenberg, R.A.Mullineaux, L.S.Thomson, R.E. eds. Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological interactions, Geophysical.Monograph 91, American Geophysical UnionWashington D.C.4771Google Scholar
  4. Bemis, K.G., Von Herzen, R.P., Mottl, M.J. 1993Geothermal heat flux from hydrothermal plumes on the Juan de Fuca RidgeJ. Geophys. Res.9863516365Google Scholar
  5. Converse, D.R., Holland, H.D., Edmond, J.M. 1984Flow rates in the axial hot springs of the East Pacific Rise (21° N): Implications for the heat budget and the formation of massive sulfide depositsEarth Planet. Sci. Lett.69159175CrossRefGoogle Scholar
  6. DeMets, C., Gordon, R.G., Argus, D.F., Stein, S. 1990Current plate motionsGeophys. J. Int.101425478Google Scholar
  7. Detrick, R.S., Harding, A.J., Kent, G.M., Orcutt, J.A., Mutter, J.C., Buhl, P. 1993Seismic structure of the southern East Pacific RiseScience259499503Google Scholar
  8. Fornari, D.J., Embley, R.W. 1995Tectonic and volcanic controls on hydrothermal processes at the mid-ocean ridge: An overview based on near-bottom and submersible studiesHumphris, S.E.Zierenberg, R.A.Mullineaux, L.S.Thomson, R.E. eds. Seafloor Hydrothermal Systems Physical, Chemical, Biological, and Geological interactions, Geophysical.Monograph 91, American Geophysical UnionWashington, D.C.146Google Scholar
  9. Fischer, H.B., List, E.J., Koh, R.C.Y., Imberger, J., Brooks, N.H. 1979Mixing in Inland and Coastal WatersAcademic PressLondon483Google Scholar
  10. Fujioka, K., Kobayashi, K., Kato, K., Aoki, M., Mitsuzawa, K., Kinoshita, M., Nishizawa, A. 1997Tide-related variability of TAG hydrothermal activity observed by deep-sea monitoring system and OBSHEarth Planet. Sci. Lett.153239250CrossRefGoogle Scholar
  11. Fujioka, K. Mitsuzawa, K. Kinoshita, M. Shipboard scientific party1999Hydrothermal activity and long-term monitoring at southern East Pacific Rise – Preliminary results of the Ridge Flux SEPR’97JAMSTEC J. Deep Sea Res.142133Google Scholar
  12. Ginster, U, Mottl, M.J., Von Herzen, R.P. 1994Heat flux from black smokers on the Endeavour and Cleft segments, Juan de Fuca RidgeJ. Geophys. Res.9949374950CrossRefGoogle Scholar
  13. Goto S., Kinoshita M., Nishimura K., Matsubayashi O., 1999, Long-term temperature variation at diffuse hydrothermal venting field at RM24 site (17°25′ S), S-EPR. Eos Trans. AGU, 80(46), Fall Meet. Suppl., Abstract V11A-03.Google Scholar
  14. Goto, S., Kinoshita, M., Schultz, A., Von Herzen, R.P. 2003Estimate of heat flux and its temporal variation at the TAG hydrothermal mound, Mid-Atlantic Ridge 26° NJ. Geophys. Res.1082434doi:10.1029/2001JB000703CrossRefGoogle Scholar
  15. Kaye, G.W.C., Laby, T.H. 1986Tables of Physical and Chemical Constants and Some Mathematical Functions15LongmanLondon477Google Scholar
  16. Kinoshita, M., Ytow, N., Akashi, A., Tatekawa, K. 1999Detailed mapping of a hydrothermal field using navigation and visual data of submersible Shinkai 6500 (in Japanese with English abstract)JAMSTEC J. Deep Sea Res.14661669Google Scholar
  17. Little, S.A., Stolzenbach, K.D., Von Herzen, R.P. 1987Measurements of plume flow from a hydrothermal vent fieldJ. Geophys. Res.9225872596Google Scholar
  18. Macdonald, K.C., Becker, K., Spiess, F.N., Ballard, R.D. 1980Hydrothermal heat flux of the “black smoker” vents on the East Pacific RiseEarth. Planet. Sci. Lett.4817CrossRefGoogle Scholar
  19. Middleton, J.H. 1986The rise of forced plumes in a stably stratified crossflowBoundary-Layer Meteorol.36187199CrossRefGoogle Scholar
  20. Mitsuzawa, K., Sugawara, T., Nakamura, K., Urabe, T., Fujioka, K. 1999Ten-days observation period on a low-temperature hydrothermal field at the Southern East Pacific Rise (in Japanese with English abstract)JAMSTEC J. Deep Sea Res.147990Google Scholar
  21. Morton, B.R., Taylor, G.I., Turner, J.S. 1956Turbulent gravitational convection from maintained and instantaneous sourceProc. R.. Soc. London Ser. A234123Google Scholar
  22. Renard, V., Hekinian, R., Francheteau, J., Ballard, R.D., Backer, H. 1985Submersible observations at the axis of the ultra-fast-spreading East Pacific Rise (17°30′ to 21°30′ S)Earth Planet. Sci. Lett.75339353CrossRefGoogle Scholar
  23. Rona, P.A., Trivett, D.A. 1992Discrete and diffuse heat transfer at ASHES vent field, Axial Volcano, Juan de Fuca RidgeEarth Planet. Sci. Lett.1095771CrossRefGoogle Scholar
  24. Scheirer, D.S., Macdonald, K.C., Forsyth, D.W., Miller, S.P., Wright, D.J., Cormier, M.-H., Weiland, C.M. 1996A map series of the southern East Pacific Rise and its flanks, 15 °S to 19 °SMar. Geophys. Res.18112CrossRefGoogle Scholar
  25. Schultz, A., Delaney, J.R., McDuff, R.E. 1992On the partitioning of heat flux between diffuse and point source seafloor ventingJ. Geophys. Res.971229912314Google Scholar
  26. Singh, S.C., Collier, J.S., Harding, A.J., Kent, G.M., Orcutt, J.A. 1999Seismic evidence for a hydrothermal layer above the solid roof of the axial magma chamberGeology27219222CrossRefGoogle Scholar
  27. Turner, J.S. 1986Turbulent entrainment: The development of the entrainment assumption, and its application to geophysical flowsJ. Fluid Mech.173431471Google Scholar
  28. Urabe T., Mitsuzawa K., On-board Scientific Party of the MOAI’98 Cruise., 1998. On-board Report of the MOAI’98 Cruise of the Ridge Flux Project (Alvin/Atlantis 3/XXVII cruise) to Southern East Pacific Rise, 283 pp.Google Scholar
  29. Urabe, T., Baker, E.T., Ishibashi, J., Feely, R.A., Marumo, K., Massoth, G.J., Maruyama, A., Shitashima, K., Okamura, K., Lupton, J.E., Sonoda, A., Yamazaki, T., Aoki, M., Gendron, J., Greene, R., Kaiho, Y., Kishimoto, K., Lebon, G., Matsumoto, T., Nakamura, K., Nishizawa, A., Okano, O., Paradis, G., Roe, K., Shibata, T., Tennant, D., Vance, T., Walker, S.L., Yabuki, T., Ytow, N. 1995The effect of magmatic activity on hydrothermal venting along the superfast-spreading East Pacific RiseScience26910921095Google Scholar
  30. Urabe, T., Fujioka, K., Mitsuzawa, K., Cruise,  1999On-boardScientificPartyoftheRidge Flux’97 Instration of long-term monitoring station at the superfast-spreading southern East Pacific Rise (in Japanese with English abstract)JAMSTEC J. Deep Sea Res.14119Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Shusaku Goto
    • 1
  • Masataka Kinoshita
    • 2
  • Kyohiko Mitsuzawa
    • 3
  1. 1.Aso Volcanological Laboratory, Institute for Geothermal SciencesKyoto UniversityKumamotoJapan
  2. 2.Program for Deep Sea ResearchJapan Agency for Marine-Earth Science and TechnologyYokosukaJapan
  3. 3.Marine Technology Research and Development Program, Marine Technology CenterJapan Agency for Marine-Earth Science and TechnologyYokosukaJapan

Personalised recommendations