Skip to main content
Log in

Analysis of smart damping of laminated composite beams using mesh free method

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

This paper is concerned with the development of mesh free model for the performance analysis of active constrained layered damping (ACLD) treatments on smart laminated composite beams. The overall structure is composed of a substrate laminated composite beam integrated with a viscoelastic layer and a piezoelectric layer attached partially or fully at the top surface of the substrate beam. The piezoelectric layer acts as the active constraining layer of the smart beam and the viscoelastic layer acts as the constrained layer. A layer wise displacement theory has been used to derive the models. Both symmetric cross-ply and antisymmetric angle-ply laminated beams are considered for the numerical analysis. It is observed that ACLD treatment significantly improves the active damping properties of the substrate beam. The numerical results also reveal that the triangular ACLD treatment is more effective than the rectangular ACLD treatment of same thickness and volume for active damping of smart composite beams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdullah, E.J., Majid, D.L., Romli, F.I., Gaikwad, P.S., Yuan, L.G., Harun, N.F.: Active control of strain in a composite plate using shape memory alloy actuators. Int. J. Mech. Mater. Design 11(1), 25–39 (2015)

    Article  Google Scholar 

  • Aboudi, J.: Micromechanical prediction of the effective coefficients of thermo-piezoelectric multiphase composites. J. Intell. Mater. Syst. Struct. 9(9), 713–722 (1998)

    Article  Google Scholar 

  • Agnes, G.S., Napolitano, K.: Active constrained layer viscoelastic damping. In AIAA/ASME/ASCE/AHS/ASC 34th Structures, Structural Dynamics, and Materials Conference, pp. 3499–3506 (1993)

  • Alam, N., Asnani, N.T.: Vibration and damping analysis of multilayered rectangular plates with constrained viscoelastic layers. J. Sound Vib. 97(4), 597–614 (1984)

    Article  Google Scholar 

  • Alam, N., Asnani, N.T.: Refined vibration and damping analysis of multilayered rectangular plates. J. Sound Vib. 119(2), 347–362 (1987)

    Article  Google Scholar 

  • Atluri, S.N., Zhu, T.: A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics. Comput. Mech. 22(2), 117–127 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Bailey, T., Hubbard, J.E.: Distributed piezoelectric-polymer active vibration control of a cantilever beam. J. Guid. Control Dyn. 8(5), 605–611 (1985)

    Article  MATH  Google Scholar 

  • Baz, A.: Robust control of active constrained layer damping. J. Sound Vib. 211(3), 467–480 (1998)

    Article  Google Scholar 

  • Baz, A., Ro, J.: Partial treatment of flexible beams with active constrained layer damping. ASME Appl. Mech. Div. Publ. AMD 167, 61 (1993)

    Google Scholar 

  • Baz, A., Ro, J.: Optimum design and control of active constrained layer damping. J. Mech. Design 117(B), 135–144 (1995)

    Article  Google Scholar 

  • Baz, A., Ro, J.: Vibration control of plates with active constrained layer damping. Smart Mater. Struct. 5(3), 272 (1996)

    Article  Google Scholar 

  • Belytschko, T., Lu, Y.Y., Gu, L.: Element-free Galerkin methods. Int. J. Numer. Methods Eng. 37(2), 229–256 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Belytschko, T., Krongauz, Y., Organ, D., Fleming, M., Krysl, P.: Meshless methods: an overview and recent developments. Comput. Methods Appl. Mech. Eng. 139(1), 3–47 (1996)

    Article  MATH  Google Scholar 

  • Biswas, D., Ray, M.C.: Active constrained layer damping of geometrically nonlinear vibration of rotating composite beams using 1-3 piezoelectric composite. Int. J. Mech. Mater. Design 9(1), 83–104 (2013)

    Article  Google Scholar 

  • Bruant, I., Proslier, L.: Optimal location of piezoelectric actuators for active vibration control of thin axially functionally graded beams. Int. J. Mech. Mater. Design 12(2), 173–192 (2016)

    Article  Google Scholar 

  • Burke, S., Hubbard, J.: Active vibration control of a simply supported beam using a spatially distributed actuator. IEEE Control Syst. Mag. 7(4), 25–30 (1987)

    Article  Google Scholar 

  • Chattopadhyay, A., Kim, J.S., Liu, Q.: Aeromechanical stability analysis and control of smart composite rotor blades. J. Vib. Control 8(6), 847–860 (2002)

    Google Scholar 

  • Chen, X.L., Liu, G.R., Lim, S.P.: An element free Galerkin method for the free vibration analysis of composite laminates of complicated shape. Compos. Struct. 59, 279–289 (2003)

    Article  Google Scholar 

  • Crawley, E.F., De Luis, J.: Use of piezoelectric actuators as elements of intelligent structures. AIAA J. 25(10), 1373–1385 (1987)

    Article  Google Scholar 

  • Dai, K.Y., Liu, G.R., Lim, K.M., Chen, X.L.: A mesh-free method for static and free vibration analysis of shear deformable laminated composite plates. J. Sound Vib. 269(3), 633–652 (2004)

    Article  Google Scholar 

  • Dolbow, J., Belytschko, T.: An introduction to programming the meshless element free Galerkin method. Arch. Comput. Methods Eng. 5(3), 207–241 (1998)

    Article  MathSciNet  Google Scholar 

  • Dunn, M.L., Taya, M.: Micromechanics predictions of the effective electroelastic moduli of piezoelectric composites. Int. J. Solids Struct. 30(2), 161–175 (1993)

    Article  MATH  Google Scholar 

  • Ha, S.K., Keilers, C., Chang, F.K.: Finite element analysis of composite structures containing distributed piezoceramic sensors and actuators. AIAA J. 30(3), 772–780 (1992)

    Article  MATH  Google Scholar 

  • Hasheminejad, S.M., Oveisi, A.: Active vibration control of an arbitrary thick smart cylindrical panel with optimally placed piezoelectric sensor/actuator pairs. Int. J. Mech. Mater. Design 12(1), 1–16 (2016)

    Article  Google Scholar 

  • Kattimani, S.C., Ray, M.C.: Control of geometrically nonlinear vibrations of functionally graded magneto–electro–elastic plates. Int. J. Mech. Sci. 99, 154–167 (2015)

    Article  Google Scholar 

  • KerwinJr, E.M.: Damping of flexural waves by a constrained viscoelastic layer. J. Acoust. Soc. Am. 31(7), 952–962 (1959)

    Article  Google Scholar 

  • Krysl, P., Belytschko, T.: Analysis of thin plates by the element-free Galerkin method. Comput. Mech. 17(1–2), 26–35 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Krysl, P., Belytschko, T.: Analysis of thin shells by the element-free Galerkin method. Int. J. Solids Struct. 33(20), 3057–3080 (1996)

    Article  MATH  Google Scholar 

  • Kumar, S., Kumar, R., Sehgal, R.: Enhanced ACLD treatment using stand-off-layer: FEM based design and experimental vibration analysis. Appl. Acoust. 72(11), 856–872 (2011)

    Article  Google Scholar 

  • Lancaster, P., Salkauskas, K.: Surfaces generated by moving least squares methods. Math. Comput. 37(155), 141–158 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  • Langote, P.K., Seshu, P.: Experimental studies on active vibration control of a beam using hybrid active/passive constrained layer damping treatments. J. Vib. Acoust. 127(5), 515–518 (2005)

    Article  Google Scholar 

  • Lesieutre, G.A., Lee, U.: A finite element for beams having segmented active constrained layers with frequency-dependent viscoelastics. Smart Mater. Struct. 5(5), 615 (1996)

    Article  Google Scholar 

  • Liew, K.M., Lim, H.K., Tan, M.J., He, X.Q.: Analysis of laminated composite beams and plates with piezoelectric patches using the element-free Galerkin method. Comput. Mech. 29(6), 486–497 (2002)

    Article  MATH  Google Scholar 

  • Liu, G.R.: Meshfree methods: moving beyond the finite element method. Taylor & Francis, Routledge (2009)

    Book  Google Scholar 

  • Liu, G.R., Chen, X.L.: A mesh-free method for static and free vibration analysis of thin plates of complicated shape. J. Sound Vib. 241, 839–855 (2001)

    Article  Google Scholar 

  • Mallik, N., Ray, M.C.: Effective coefficients of piezoelectric fiber-reinforced composites. AIAA J. 41(4), 704–710 (2003)

    Article  Google Scholar 

  • Mallik, N., Ray, M.C.: Exact solutions for the analysis of piezoelectric fiber reinforced composites as distributed actuators for smart composite plates. Int. J. Mech. Mater. Design 1(4), 347–364 (2004)

    Article  Google Scholar 

  • Nath, S., Wereley, N.M.: Active constrained layer damping for rotorcraft flex beams. In Proceedings of the 36 th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (1995)

  • Peng, L.X., Kitipornchai, S., Liew, K.M.: Analysis of rectangular stiffened plates under uniform lateral load based on FSDT and element-free Galerkin method. Int. J. Mech. Sci. 47, 251–276 (2005)

    Article  MATH  Google Scholar 

  • Preumont, A.: Vibration control of active structures: an introduction, vol. 179. Springer, Berlin (2011)

    MATH  Google Scholar 

  • Rashid, M.K., Shihab, K.I.: Intelligent design of cutting tools using smart material. Int. J. Mech. Mater. Design 3(1), 17–27 (2006)

    Article  Google Scholar 

  • Ray, M.C.: Optimal control of laminated shells using piezoelectric sensor and actuator layers. AIAA J. 41(6), 1151–1157 (2003)

    Article  Google Scholar 

  • Ray, M.C.: Micromechanics of piezoelectric composites with improved effective piezoelectric constant. Int. J. Mech. Mater. Design 3(4), 361–371 (2006)

    Article  Google Scholar 

  • Ray, M.C., Baz, A.: Optimization of energy dissipation of active constrained layer damping treatments of plates. J. Sound Vib. 208(3), 391–406 (1997)

    Article  Google Scholar 

  • Ray, M.C., Faye, A.: Active structural-acoustic control of laminated composite plates using vertically/obliquely reinforced 1–3 piezoelectric composite patch. Int. J. Mech. Mater. Design 5(2), 123 (2009)

    Article  Google Scholar 

  • Ray, M.C., Mallik, N.: Performance of smart damping treatment using piezoelectric fiber reinforced composites. AIAA J. 43(1), 184–193 (2005)

    Article  Google Scholar 

  • Ray, M.C., Pradhan, A.K.: The performance of vertically reinforced 1–3 piezoelectric composites in active damping of smart structures. Smart Mater. Struct. 15(2), 631 (2006)

    Article  Google Scholar 

  • Ray, M.C., Rao, K.M., Samanta, B.: Exact solution for static analysis of an intelligent structure under cylindrical bending. Comput. Struct. 47(6), 1031–1042 (1993)

    Article  MATH  Google Scholar 

  • Ray, M.C., Faye, A., Patra, S., Bhattacharyya, R.: Theoretical and experimental investigations on the active structural–acoustic control of a thin plate using a vertically reinforced 1-3 piezoelectric composite. Smart Mater. Struct. 18(1), 015012 (2008)

    Article  Google Scholar 

  • Reddy, J.N.: Mechanics of Laminated Composite Plates: Theory and Analysis. CRC Press, Boca Raton (1997)

    MATH  Google Scholar 

  • Ro, J., Baz, A.: Optimum placement and control of active constrained layer damping using modal strain energy approach. J. Vib. Control 8(6), 861–876 (2002)

    MATH  Google Scholar 

  • Ross, D., Ungar, E.E., Kerwin, E.M.: Flexural vibrations by means of viscoelastic laminate. ASME Struct. Damping, 48–87 (1959)

  • Sarangi, S.K., Ray, M.C.: Active damping of geometrically nonlinear vibrations of laminated composite shallow shells using vertically/obliquely reinforced 1-3 piezoelectric composites. Int. J. Mech. Mater. Design 7(1), 29–44 (2011)

    Article  MATH  Google Scholar 

  • Smith, W.A., Auld, B.A.: Modeling 1–3 composite piezoelectrics: thickness-mode oscillations. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 38(1), 40–47 (1991)

    Article  Google Scholar 

  • Talebitooti, R., Daneshjoo, K., Jafari, S.A.M.: Optimal control of laminated plate integrated with piezoelectric sensor and actuator considering TSDT and meshfree method. Eur. J. Mech. A/Solids 55, 199–211 (2016)

    Article  MathSciNet  Google Scholar 

  • Tan, P., Tong, L.: A micro-electromechanics model for the 3-D PFRC materials. J. Compos. Mater. 36(2), 127–141 (2002)

    Article  Google Scholar 

  • Xiao, J.R., McCarthy, M.A.: Meshless analysis of Timoshenko beams based on a locking-free formulation and variational approaches. Comput. Methods Appl. Mech. Eng. 192(39), 4403–4424 (2003)

    Article  MATH  Google Scholar 

  • Zhang, R., Feng, W.: Optimal placement of piezo actuators on a beam: a dynamic problem from stochastic to deterministic. Int. J. Mech. Mater. Design 6(3), 189–195 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Ray.

Appendices

Appendix 1

In Eq. (4), the matrices [Z 1 ], [Z 2 ] and [Z 3 ] are given by:

$$\left[ {\varvec{z}_{{\mathbf{1}}} } \right] = \left[ {\begin{array}{*{20}c} \varvec{z} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} \\ {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{1}} & {\mathbf{0}} & {\mathbf{0}} \\ {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{1}} & {\mathbf{0}} & {\mathbf{0}} & \varvec{z} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} \\ \end{array} } \right],$$
$$\left[ {\varvec{z}_{{\mathbf{2}}} } \right] = \left[ {\begin{array}{*{20}c} {\frac{\varvec{h}}{{\mathbf{2}}}} & {\varvec{z} - \frac{\varvec{h}}{{\mathbf{2}}}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} \\ {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{1}} & {\mathbf{0}} \\ {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{1}} & {\mathbf{0}} & {\frac{\varvec{h}}{{\mathbf{2}}}} & {\varvec{z} - \frac{\varvec{h}}{{\mathbf{2}}}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} \\ \end{array} } \right],$$
$$\left[ {\varvec{z}_{{\mathbf{3}}} } \right] = \left[ {\begin{array}{*{20}c} {\frac{\varvec{h}}{{\mathbf{2}}}} & {\varvec{h}_{\varvec{v}} } & {\varvec{z} - \frac{\varvec{h}}{{\mathbf{2}}} - \varvec{h}_{\varvec{v}} } & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} \\ {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{1}} \\ {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{1}} & {\frac{\varvec{h}}{{\mathbf{2}}}} & {\varvec{h}_{\varvec{v}} } & {\varvec{z} - \frac{\varvec{h}}{{\mathbf{2}}} - \varvec{h}_{\varvec{v}} } & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} \\ \end{array} } \right]$$

Appendix 2

In Eq. (22), the matrices \([\varvec{L}_{{\varvec{tb}}} ]\) and \([\varvec{L}_{{\varvec{rb}}} ]\) are given by:

$$[\varvec{L}_{{\varvec{tb}}} ] = \left[ {\begin{array}{*{20}l} {[\varvec{L}_{{\varvec{tn}{\mathbf{1}}}} ]} \hfill & {[\varvec{L}_{{\varvec{tb}{\mathbf{2}}}} ]} \hfill & {[\varvec{L}_{{\varvec{tb}{\mathbf{3}}}} ]} \hfill & \ldots \hfill & {[\varvec{L}_{{\varvec{tbn}}} ]} \hfill \\ \end{array} } \right],$$
$$[\varvec{L}_{{\varvec{rb}}} ] = \left[ {\begin{array}{*{20}l} {[\varvec{L}_{{\varvec{rn}{\mathbf{1}}}} ]} \hfill & {[\varvec{L}_{{\varvec{rb}{\mathbf{2}}}} ]} \hfill & {[\varvec{L}_{{\varvec{rb}{\mathbf{3}}}} ]} \hfill & \ldots \hfill & {[\varvec{L}_{{\varvec{rbn}}} ]} \hfill \\ \end{array} } \right],\;[\varvec{L}_{{\varvec{tbi}}} ] = \left[ {\begin{array}{*{20}c} {\frac{{\mathbf{\partial }}}{{{\mathbf{\partial }}\varvec{x}}}} & {\mathbf{0}} \\ {\mathbf{0}} & {\mathbf{0}} \\ {\mathbf{0}} & {\frac{{\mathbf{\partial }}}{{{\mathbf{\partial }}\varvec{z}}}} \\ \end{array} } \right],$$
$$[\varvec{L}_{{\varvec{rbi}}} ] = \left[ {\begin{array}{*{20}c} {\frac{{\mathbf{\partial }}}{{{\mathbf{\partial }}\varvec{x}}}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} \\ {\mathbf{0}} & {\frac{{\mathbf{\partial }}}{{{\mathbf{\partial }}\varvec{x}}}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} \\ {\mathbf{0}} & {\mathbf{0}} & {\frac{{\mathbf{\partial }}}{{{\mathbf{\partial }}\varvec{x}}}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} \\ {\mathbf{1}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} \\ {\mathbf{0}} & {\mathbf{1}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} \\ {\mathbf{0}} & {\mathbf{0}} & {\mathbf{1}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} \\ {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\frac{{\mathbf{\partial }}}{{{\mathbf{\partial }}\varvec{z}}}} & {\mathbf{0}} & {\mathbf{0}} \\ {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\frac{{\mathbf{\partial }}}{{{\mathbf{\partial }}\varvec{z}}}} & {\mathbf{0}} \\ {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\frac{{\mathbf{\partial }}}{{{\mathbf{\partial }}\varvec{z}}}} \\ {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{1}} & {\mathbf{0}} & {\mathbf{0}} \\ {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{1}} & {\mathbf{0}} \\ {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} & {\mathbf{1}} \\ \end{array} } \right],\quad \varvec{i} = {\mathbf{1}},{\mathbf{2}},{\mathbf{3}},{\mathbf{ \ldots }},\varvec{n},$$

For a rectangular patch of ACLD treatment, the various sub-matrices appearing in Eqs. (24) and (25) are given by:

$$[\varvec{K}_{{\varvec{tt}}} ] = \int\limits_{{\mathbf{0}}}^{\varvec{L}} {[\varvec{B}_{\varvec{t}} ]^{\varvec{T}} [\varvec{D}_{\varvec{t}}^{\varvec{b}} ][\varvec{B}_{\varvec{t}} ]} \varvec{dx} + \int\limits_{{\mathbf{0}}}^{{\varvec{L}_{\varvec{a}} }} {[\varvec{B}_{\varvec{t}} ]^{\varvec{T}} [\varvec{D}_{\varvec{t}}^{\varvec{v}} ][\varvec{B}_{\varvec{t}} ]} \varvec{dx} + \int\limits_{{\mathbf{0}}}^{{\varvec{L}_{\varvec{a}} }} {[\varvec{B}_{\varvec{t}} ]^{\varvec{T}} [\varvec{D}_{\varvec{t}}^{\varvec{p}} ][\varvec{B}_{\varvec{t}} ]} \varvec{dx} + \int\limits_{{\mathbf{0}}}^{\varvec{L}} {[\varvec{N}_{\varvec{t}} ]^{\varvec{T}} [\varvec{\alpha}_{\varvec{t}} ][\varvec{N}_{\varvec{t}} ]} \varvec{dx},$$
$$[\varvec{K}_{{\varvec{tr}}} ] = \int\limits_{{\mathbf{0}}}^{\varvec{L}} {[\varvec{B}_{\varvec{t}} ]^{\varvec{T}} [\varvec{D}_{{\varvec{tr}}}^{\varvec{b}} ][\varvec{B}_{\varvec{r}} ]} \varvec{dx} + \int\limits_{{\mathbf{0}}}^{{\varvec{L}_{\varvec{a}} }} {[\varvec{B}_{\varvec{t}} ]^{\varvec{T}} [\varvec{D}_{{\varvec{tr}}}^{\varvec{v}} ][\varvec{B}_{\varvec{r}} ]} \varvec{dx} + \int\limits_{{\mathbf{0}}}^{{\varvec{L}_{\varvec{a}} }} {[\varvec{B}_{\varvec{t}} ]^{\varvec{T}} [\varvec{D}_{{\varvec{tr}}}^{\varvec{p}} ][\varvec{B}_{\varvec{r}} ]} \varvec{dx} + \int\limits_{{\mathbf{0}}}^{\varvec{L}} {[\varvec{N}_{\varvec{t}} ]^{\varvec{T}} [\varvec{\alpha}_{{\varvec{tr}}} ][\varvec{N}_{\varvec{r}} ]} \varvec{dx},$$
$$[\varvec{K}_{{\varvec{rr}}} ] = \int\limits_{{\mathbf{0}}}^{\varvec{L}} {[\varvec{B}_{\varvec{r}} ]^{\varvec{T}} [\varvec{D}_{{\varvec{rr}}}^{\varvec{b}} ][\varvec{B}_{\varvec{r}} ]} \varvec{dx} + \int\limits_{{\mathbf{0}}}^{{\varvec{L}_{\varvec{a}} }} {[\varvec{B}_{\varvec{r}} ]^{\varvec{T}} [\varvec{D}_{{\varvec{rr}}}^{\varvec{v}} ][\varvec{B}_{\varvec{r}} ]} \varvec{dx} + \int\limits_{{\mathbf{0}}}^{{\varvec{L}_{\varvec{a}} }} {[\varvec{B}_{\varvec{r}} ]^{\varvec{T}} [\varvec{D}_{{\varvec{rr}}}^{\varvec{p}} ][\varvec{B}_{\varvec{r}} ]} \varvec{dx} + \int\limits_{{\mathbf{0}}}^{\varvec{L}} {[\varvec{N}_{\varvec{r}} ]^{\varvec{T}} [\varvec{\alpha}_{\varvec{r}} ][\varvec{N}_{\varvec{r}} ]} \varvec{dx},$$
$$\{ \varvec{F}\} = \int\limits_{{\mathbf{0}}}^{\varvec{L}} {\overline{\varvec{p}} \varvec{N}_{\varvec{t}}^{\varvec{T}} [\begin{array}{*{20}c} {\mathbf{0}} & {\mathbf{1}} \\ \end{array} ]^{\varvec{T}} } \varvec{dz},\quad \{ \varvec{F}_{{\varvec{tp}}} \} = \int\limits_{{\mathbf{0}}}^{{\varvec{L}_{\varvec{a}} }} {\varvec{B}_{\varvec{t}} \varvec{D}_{{_{{\varvec{tp}}} }}^{\varvec{p}} } \varvec{dz},\quad \{ \varvec{F}_{{\varvec{rp}}} \} = \int\limits_{{\mathbf{0}}}^{{\varvec{L}_{\varvec{a}} }} {\varvec{B}_{\varvec{r}} \varvec{D}_{{_{{\varvec{rp}}} }}^{\varvec{p}} } \varvec{dz},$$
$$[\varvec{M}] = \sum\limits_{{\varvec{k} = {\mathbf{1}}}}^{{\varvec{k} = \varvec{N}}} {\int\limits_{{\mathbf{0}}}^{\varvec{L}} {\int\limits_{{\varvec{h}_{\varvec{k}} }}^{{\varvec{h}_{{\varvec{k} + {\mathbf{1}}}} }} {[\varvec{N}_{\varvec{t}} ]^{\varvec{T}} [\varvec{\rho}^{\varvec{k}} ]} [\varvec{N}_{\varvec{t}} ]} \varvec{dzdx}} + \int\limits_{{\mathbf{0}}}^{{\varvec{L}_{\varvec{a}} }} {[\varvec{N}_{\varvec{t}} ]^{\varvec{T}} [\varvec{\rho}^{{\varvec{N} + {\mathbf{1}}}} \varvec{h}_{\varvec{v}} ]\varvec{b}(\varvec{x})[\varvec{N}_{\varvec{t}} ]} \varvec{dx} + \int\limits_{0}^{{\varvec{L}_{\varvec{a}} }} {[\varvec{N}_{\varvec{t}} ]^{\varvec{T}} [\varvec{\rho}^{{\varvec{N} + {\mathbf{1}}}} \varvec{h}_{\varvec{p}} ]\varvec{b}(\varvec{x})[\varvec{N}_{\varvec{t}} ]} \varvec{dx}$$

In case of triangular patch, the above mentioned matrices are to be augmented as follows:

$$[\varvec{K}_{{\varvec{tt}}} ] = \int\limits_{{\mathbf{0}}}^{\varvec{L}} {[\varvec{B}_{\varvec{t}} ]^{\varvec{T}} [\varvec{D}_{\varvec{t}}^{\varvec{b}} ][\varvec{B}_{\varvec{t}} ]} \varvec{dx} + \int\limits_{{\mathbf{0}}}^{{\varvec{L}_{\varvec{a}} }} {[\varvec{B}_{\varvec{t}} ]^{\varvec{T}} [\varvec{D}_{\varvec{t}}^{\varvec{v}} ][\varvec{B}_{\varvec{t}} ]\varvec{b}(\varvec{x})} \varvec{dx} + \int\limits_{{\mathbf{0}}}^{{\varvec{L}_{\varvec{a}} }} {[\varvec{B}_{\varvec{t}} ]^{\varvec{T}} [\varvec{D}_{\varvec{t}}^{\varvec{p}} ][\varvec{B}_{\varvec{t}} ]} \varvec{b}(\varvec{x})\varvec{dx} + \int\limits_{{\mathbf{0}}}^{\varvec{L}} {[\varvec{N}_{\varvec{t}} ]^{\varvec{T}} [\varvec{\alpha}_{\varvec{t}} ][\varvec{N}_{\varvec{t}} ]} \varvec{dx},$$
$$[\varvec{K}_{{\varvec{tr}}} ] = \int\limits_{{\mathbf{0}}}^{\varvec{L}} {[\varvec{B}_{\varvec{t}} ]^{\varvec{T}} [\varvec{D}_{{\varvec{tr}}}^{\varvec{b}} ][\varvec{B}_{\varvec{r}} ]} \varvec{dx} + \int\limits_{{\mathbf{0}}}^{{\varvec{L}_{\varvec{a}} }} {[\varvec{B}_{\varvec{t}} ]^{\varvec{T}} [\varvec{D}_{{\varvec{tr}}}^{\varvec{v}} ][\varvec{B}_{\varvec{r}} ]} \varvec{b}(\varvec{x})\varvec{dx} + \int\limits_{{\mathbf{0}}}^{{\varvec{L}_{\varvec{a}} }} {[\varvec{B}_{\varvec{t}} ]^{\varvec{T}} [\varvec{D}_{{\varvec{tr}}}^{\varvec{p}} ][\varvec{B}_{\varvec{r}} ]} \varvec{b}(\varvec{x})\varvec{dx} + \int\limits_{{\mathbf{0}}}^{\varvec{L}} {[\varvec{N}_{\varvec{t}} ]^{\varvec{T}} [\varvec{\alpha}_{{\varvec{tr}}} ][\varvec{N}_{\varvec{r}} ]} \varvec{dx},$$
$$[\varvec{K}_{{\varvec{rr}}} ] = \int\limits_{{\mathbf{0}}}^{\varvec{L}} {[\varvec{B}_{\varvec{r}} ]^{\varvec{T}} [\varvec{D}_{{\varvec{rr}}}^{\varvec{b}} ][\varvec{B}_{\varvec{r}} ]} \varvec{dx} + \int\limits_{{\mathbf{0}}}^{{\varvec{L}_{\varvec{a}} }} {[\varvec{B}_{\varvec{r}} ]^{\varvec{T}} [\varvec{D}_{{\varvec{rr}}}^{\varvec{v}} ][\varvec{B}_{\varvec{r}} ]} \varvec{b}(\varvec{x})\varvec{dx} + \int\limits_{{\mathbf{0}}}^{{\varvec{L}_{\varvec{a}} }} {[\varvec{B}_{\varvec{r}} ]^{\varvec{T}} [\varvec{D}_{{\varvec{rr}}}^{\varvec{p}} ][\varvec{B}_{\varvec{r}} ]} \varvec{b}(\varvec{x})\varvec{dx} + \int\limits_{{\mathbf{0}}}^{\varvec{L}} {[\varvec{N}_{\varvec{r}} ]^{\varvec{T}} [\varvec{\alpha}_{\varvec{r}} ][\varvec{N}_{\varvec{r}} ]} \varvec{dx},$$
$$\{ \varvec{F}\} = \int\limits_{{\mathbf{0}}}^{\varvec{L}} {\overline{\varvec{p}} \varvec{N}_{\varvec{t}}^{\varvec{T}} [\begin{array}{*{20}c} {\mathbf{0}} & {\mathbf{1}} \\ \end{array} ]^{\varvec{T}} } \varvec{dz},\quad \{ \varvec{F}_{{\varvec{tp}}} \} = \int\limits_{{\mathbf{0}}}^{{\varvec{L}_{\varvec{a}} }} {\varvec{B}_{\varvec{t}} \varvec{D}_{{_{{\varvec{tp}}} }}^{\varvec{p}} \varvec{b}(\varvec{x})} \varvec{dz},\quad \{ \varvec{F}_{{\varvec{rp}}} \} = \int\limits_{{\mathbf{0}}}^{{\varvec{L}_{\varvec{a}} }} {\varvec{B}_{\varvec{r}} \varvec{D}_{{_{{\varvec{rp}}} }}^{\varvec{p}} } \varvec{b}(\varvec{x})\varvec{dz},$$
$$[\varvec{M}] = \sum\limits_{{\varvec{k} = {\mathbf{1}}}}^{{\varvec{k} = \varvec{N}}} {\int\limits_{{\mathbf{0}}}^{\varvec{L}} {\int\limits_{{\varvec{h}_{\varvec{k}} }}^{{\varvec{h}_{{\varvec{k} + {\mathbf{1}}}} }} {[\varvec{N}_{\varvec{t}} ]^{\varvec{T}} [\varvec{\rho}^{\varvec{k}} ]} [\varvec{N}_{\varvec{t}} ]} \varvec{dzdx}} + \int\limits_{{\mathbf{0}}}^{{\varvec{L}_{\varvec{a}} }} {[\varvec{N}_{\varvec{t}} ]^{\varvec{T}} [\varvec{\rho}^{{\varvec{N} + {\mathbf{1}}}} \varvec{h}_{\varvec{v}} ]\varvec{b}(\varvec{x})[\varvec{N}_{\varvec{t}} ]} \varvec{dx} + \int\limits_{{\mathbf{0}}}^{{\varvec{L}_{\varvec{a}} }} {[\varvec{N}_{\varvec{t}} ]^{\varvec{T}} [\varvec{\rho}^{{\varvec{N} + {\mathbf{1}}}} \varvec{h}_{\varvec{p}} ]\varvec{b}(\varvec{x})[\varvec{N}_{\varvec{t}} ]} \varvec{dx}$$

where \(\varvec{b}(\varvec{x}) = \left( {{\mathbf{1}} - \frac{\varvec{x}}{{\varvec{L}_{\varvec{a}} }}} \right)\), \(\varvec{L}_{\varvec{a}}\) is the length of the patch. Various rigidity matrices and the rigidity vectors for electro-elastic coupling appearing in the above equations are given by:

$$[\varvec{D}_{\varvec{t}}^{\varvec{b}} ] = \sum\limits_{{\varvec{k} = {\mathbf{1}}}}^{\varvec{N}} {\int\limits_{{\varvec{h}_{\varvec{k}} }}^{{\varvec{h}_{{\varvec{k} + {\mathbf{1}}}} }} {[\varvec{C}^{\varvec{k}} ]} } \varvec{dz},\quad [\varvec{D}_{\varvec{t}}^{\varvec{v}} ] = \int\limits_{{\varvec{h}_{{_{{\varvec{N} + {\mathbf{1}}}} }} }}^{{\varvec{h}_{{\varvec{N} + {\mathbf{2}}}} }} {[\varvec{C}^{{\varvec{N} + {\mathbf{1}}}} ]} \varvec{dz},\quad [\varvec{D}_{\varvec{t}}^{\varvec{p}} ] = \int\limits_{{\varvec{h}_{{_{{\varvec{N} + {\mathbf{2}}}} }} }}^{{\varvec{h}_{{\varvec{N} + {\mathbf{3}}}} }} {[\varvec{C}^{{\varvec{N} + {\mathbf{2}}}} ]} \varvec{dz},\quad [\varvec{D}_{{\varvec{tr}}}^{\varvec{b}} ] = \sum\limits_{{\varvec{k} = {\mathbf{1}}}}^{\varvec{N}} {\int\limits_{{\varvec{h}_{\varvec{k}} }}^{{\varvec{h}_{{\varvec{k} + {\mathbf{1}}}} }} {[\bar{\varvec{C}}^{\varvec{k}} ]} } [\varvec{Z}_{{\mathbf{1}}} ]\varvec{dz},\quad [\varvec{D}_{{\varvec{tr}}}^{\varvec{v}} ] = \int\limits_{{\varvec{h}_{{\varvec{N} + {\mathbf{1}}}} }}^{{\varvec{h}_{{\varvec{N} + {\mathbf{2}}}} }} {[\bar{\varvec{C}}^{{\varvec{N} + {\mathbf{1}}}} ]} [\varvec{Z}_{{\mathbf{2}}} ]\varvec{dz},\quad [\varvec{D}_{{\varvec{tr}}}^{\varvec{p}} ] = \int\limits_{{\varvec{h}_{{\varvec{N} + {\mathbf{2}}}} }}^{{\varvec{h}_{{\varvec{N} + {\mathbf{3}}}} }} {[\bar{\varvec{C}}^{{\varvec{N} + {\mathbf{2}}}} ]} [\varvec{Z}_{{\mathbf{3}}} ]\varvec{dz},\quad [\varvec{D}_{{\varvec{rr}}}^{\varvec{b}} ] = \sum\limits_{{\varvec{k} = {\mathbf{1}}}}^{\varvec{N}} {\int\limits_{{\varvec{h}_{\varvec{k}} }}^{{\varvec{h}_{{\varvec{k} + {\mathbf{1}}}} }} {[\varvec{Z}_{{\mathbf{1}}} ]^{\varvec{T}} [\varvec{C}^{\varvec{k}} ]} } [\varvec{Z}_{{\mathbf{1}}} ]\varvec{dz},\quad [\varvec{D}_{{\varvec{rr}}}^{\varvec{v}} ] = \int\limits_{{\varvec{h}_{{\varvec{N} + {\mathbf{1}}}} }}^{{\varvec{h}_{{\varvec{N} + {\mathbf{2}}}} }} {[\varvec{Z}_{{\mathbf{2}}} ]^{\varvec{T}} [\varvec{C}^{{\varvec{N} + {\mathbf{1}}}} ]} [\varvec{Z}_{{\mathbf{2}}} ]\varvec{dz},\quad [\varvec{D}_{{\varvec{rr}}}^{\varvec{p}} ] = \int\limits_{{\varvec{h}_{{\varvec{N} + {\mathbf{2}}}} }}^{{\varvec{h}_{{\varvec{N} + {\mathbf{3}}}} }} {[\varvec{Z}_{{\mathbf{3}}} ]^{\varvec{T}} [\varvec{C}^{{\varvec{N} + {\mathbf{2}}}} ]} [\varvec{Z}_{{\mathbf{3}}} ]\varvec{dz},\quad [\varvec{D}_{{\varvec{tp}}}^{\varvec{p}} ] = \int\limits_{{\varvec{h}_{{\varvec{N} + {\mathbf{2}}}} }}^{{\varvec{h}_{{\varvec{N} + {\mathbf{3}}}} }} { - \{ \varvec{e}\} /\varvec{h}_{\varvec{p}} } \varvec{dz},\quad [\varvec{D}_{{\varvec{rp}}}^{\varvec{p}} ] = \int\limits_{{\varvec{h}_{{\varvec{N} + {\mathbf{2}}}} }}^{{\varvec{h}_{{\varvec{N} + {\mathbf{3}}}} }} { - [\varvec{Z}_{{\mathbf{3}}} ]^{{\mathbf{T}}} \{ \varvec{e}\} /\varvec{h}_{\varvec{p}} } \varvec{dz}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, S.R., Ray, M.C. Analysis of smart damping of laminated composite beams using mesh free method. Int J Mech Mater Des 14, 359–374 (2018). https://doi.org/10.1007/s10999-017-9379-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-017-9379-0

Keywords

Navigation