Analysis of smart damping of laminated composite beams using mesh free method

  • S. R. Sahoo
  • M. C. RayEmail author


This paper is concerned with the development of mesh free model for the performance analysis of active constrained layered damping (ACLD) treatments on smart laminated composite beams. The overall structure is composed of a substrate laminated composite beam integrated with a viscoelastic layer and a piezoelectric layer attached partially or fully at the top surface of the substrate beam. The piezoelectric layer acts as the active constraining layer of the smart beam and the viscoelastic layer acts as the constrained layer. A layer wise displacement theory has been used to derive the models. Both symmetric cross-ply and antisymmetric angle-ply laminated beams are considered for the numerical analysis. It is observed that ACLD treatment significantly improves the active damping properties of the substrate beam. The numerical results also reveal that the triangular ACLD treatment is more effective than the rectangular ACLD treatment of same thickness and volume for active damping of smart composite beams.


Piezoelectricity Active constrained layered damping (ACLDMesh free model Smart structures 


  1. Abdullah, E.J., Majid, D.L., Romli, F.I., Gaikwad, P.S., Yuan, L.G., Harun, N.F.: Active control of strain in a composite plate using shape memory alloy actuators. Int. J. Mech. Mater. Design 11(1), 25–39 (2015)CrossRefGoogle Scholar
  2. Aboudi, J.: Micromechanical prediction of the effective coefficients of thermo-piezoelectric multiphase composites. J. Intell. Mater. Syst. Struct. 9(9), 713–722 (1998)CrossRefGoogle Scholar
  3. Agnes, G.S., Napolitano, K.: Active constrained layer viscoelastic damping. In AIAA/ASME/ASCE/AHS/ASC 34th Structures, Structural Dynamics, and Materials Conference, pp. 3499–3506 (1993)Google Scholar
  4. Alam, N., Asnani, N.T.: Vibration and damping analysis of multilayered rectangular plates with constrained viscoelastic layers. J. Sound Vib. 97(4), 597–614 (1984)CrossRefGoogle Scholar
  5. Alam, N., Asnani, N.T.: Refined vibration and damping analysis of multilayered rectangular plates. J. Sound Vib. 119(2), 347–362 (1987)CrossRefGoogle Scholar
  6. Atluri, S.N., Zhu, T.: A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics. Comput. Mech. 22(2), 117–127 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  7. Bailey, T., Hubbard, J.E.: Distributed piezoelectric-polymer active vibration control of a cantilever beam. J. Guid. Control Dyn. 8(5), 605–611 (1985)CrossRefzbMATHGoogle Scholar
  8. Baz, A.: Robust control of active constrained layer damping. J. Sound Vib. 211(3), 467–480 (1998)CrossRefGoogle Scholar
  9. Baz, A., Ro, J.: Partial treatment of flexible beams with active constrained layer damping. ASME Appl. Mech. Div. Publ. AMD 167, 61 (1993)Google Scholar
  10. Baz, A., Ro, J.: Optimum design and control of active constrained layer damping. J. Mech. Design 117(B), 135–144 (1995)CrossRefGoogle Scholar
  11. Baz, A., Ro, J.: Vibration control of plates with active constrained layer damping. Smart Mater. Struct. 5(3), 272 (1996)CrossRefGoogle Scholar
  12. Belytschko, T., Lu, Y.Y., Gu, L.: Element-free Galerkin methods. Int. J. Numer. Methods Eng. 37(2), 229–256 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  13. Belytschko, T., Krongauz, Y., Organ, D., Fleming, M., Krysl, P.: Meshless methods: an overview and recent developments. Comput. Methods Appl. Mech. Eng. 139(1), 3–47 (1996)CrossRefzbMATHGoogle Scholar
  14. Biswas, D., Ray, M.C.: Active constrained layer damping of geometrically nonlinear vibration of rotating composite beams using 1-3 piezoelectric composite. Int. J. Mech. Mater. Design 9(1), 83–104 (2013)CrossRefGoogle Scholar
  15. Bruant, I., Proslier, L.: Optimal location of piezoelectric actuators for active vibration control of thin axially functionally graded beams. Int. J. Mech. Mater. Design 12(2), 173–192 (2016)CrossRefGoogle Scholar
  16. Burke, S., Hubbard, J.: Active vibration control of a simply supported beam using a spatially distributed actuator. IEEE Control Syst. Mag. 7(4), 25–30 (1987)CrossRefGoogle Scholar
  17. Chattopadhyay, A., Kim, J.S., Liu, Q.: Aeromechanical stability analysis and control of smart composite rotor blades. J. Vib. Control 8(6), 847–860 (2002)Google Scholar
  18. Chen, X.L., Liu, G.R., Lim, S.P.: An element free Galerkin method for the free vibration analysis of composite laminates of complicated shape. Compos. Struct. 59, 279–289 (2003)CrossRefGoogle Scholar
  19. Crawley, E.F., De Luis, J.: Use of piezoelectric actuators as elements of intelligent structures. AIAA J. 25(10), 1373–1385 (1987)CrossRefGoogle Scholar
  20. Dai, K.Y., Liu, G.R., Lim, K.M., Chen, X.L.: A mesh-free method for static and free vibration analysis of shear deformable laminated composite plates. J. Sound Vib. 269(3), 633–652 (2004)CrossRefGoogle Scholar
  21. Dolbow, J., Belytschko, T.: An introduction to programming the meshless element free Galerkin method. Arch. Comput. Methods Eng. 5(3), 207–241 (1998)MathSciNetCrossRefGoogle Scholar
  22. Dunn, M.L., Taya, M.: Micromechanics predictions of the effective electroelastic moduli of piezoelectric composites. Int. J. Solids Struct. 30(2), 161–175 (1993)CrossRefzbMATHGoogle Scholar
  23. Ha, S.K., Keilers, C., Chang, F.K.: Finite element analysis of composite structures containing distributed piezoceramic sensors and actuators. AIAA J. 30(3), 772–780 (1992)CrossRefzbMATHGoogle Scholar
  24. Hasheminejad, S.M., Oveisi, A.: Active vibration control of an arbitrary thick smart cylindrical panel with optimally placed piezoelectric sensor/actuator pairs. Int. J. Mech. Mater. Design 12(1), 1–16 (2016)CrossRefGoogle Scholar
  25. Kattimani, S.C., Ray, M.C.: Control of geometrically nonlinear vibrations of functionally graded magneto–electro–elastic plates. Int. J. Mech. Sci. 99, 154–167 (2015)CrossRefGoogle Scholar
  26. KerwinJr, E.M.: Damping of flexural waves by a constrained viscoelastic layer. J. Acoust. Soc. Am. 31(7), 952–962 (1959)CrossRefGoogle Scholar
  27. Krysl, P., Belytschko, T.: Analysis of thin plates by the element-free Galerkin method. Comput. Mech. 17(1–2), 26–35 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  28. Krysl, P., Belytschko, T.: Analysis of thin shells by the element-free Galerkin method. Int. J. Solids Struct. 33(20), 3057–3080 (1996)CrossRefzbMATHGoogle Scholar
  29. Kumar, S., Kumar, R., Sehgal, R.: Enhanced ACLD treatment using stand-off-layer: FEM based design and experimental vibration analysis. Appl. Acoust. 72(11), 856–872 (2011)CrossRefGoogle Scholar
  30. Lancaster, P., Salkauskas, K.: Surfaces generated by moving least squares methods. Math. Comput. 37(155), 141–158 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  31. Langote, P.K., Seshu, P.: Experimental studies on active vibration control of a beam using hybrid active/passive constrained layer damping treatments. J. Vib. Acoust. 127(5), 515–518 (2005)CrossRefGoogle Scholar
  32. Lesieutre, G.A., Lee, U.: A finite element for beams having segmented active constrained layers with frequency-dependent viscoelastics. Smart Mater. Struct. 5(5), 615 (1996)CrossRefGoogle Scholar
  33. Liew, K.M., Lim, H.K., Tan, M.J., He, X.Q.: Analysis of laminated composite beams and plates with piezoelectric patches using the element-free Galerkin method. Comput. Mech. 29(6), 486–497 (2002)CrossRefzbMATHGoogle Scholar
  34. Liu, G.R.: Meshfree methods: moving beyond the finite element method. Taylor & Francis, Routledge (2009)CrossRefGoogle Scholar
  35. Liu, G.R., Chen, X.L.: A mesh-free method for static and free vibration analysis of thin plates of complicated shape. J. Sound Vib. 241, 839–855 (2001)CrossRefGoogle Scholar
  36. Mallik, N., Ray, M.C.: Effective coefficients of piezoelectric fiber-reinforced composites. AIAA J. 41(4), 704–710 (2003)CrossRefGoogle Scholar
  37. Mallik, N., Ray, M.C.: Exact solutions for the analysis of piezoelectric fiber reinforced composites as distributed actuators for smart composite plates. Int. J. Mech. Mater. Design 1(4), 347–364 (2004)CrossRefGoogle Scholar
  38. Nath, S., Wereley, N.M.: Active constrained layer damping for rotorcraft flex beams. In Proceedings of the 36 th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (1995)Google Scholar
  39. Peng, L.X., Kitipornchai, S., Liew, K.M.: Analysis of rectangular stiffened plates under uniform lateral load based on FSDT and element-free Galerkin method. Int. J. Mech. Sci. 47, 251–276 (2005)CrossRefzbMATHGoogle Scholar
  40. Preumont, A.: Vibration control of active structures: an introduction, vol. 179. Springer, Berlin (2011)zbMATHGoogle Scholar
  41. Rashid, M.K., Shihab, K.I.: Intelligent design of cutting tools using smart material. Int. J. Mech. Mater. Design 3(1), 17–27 (2006)CrossRefGoogle Scholar
  42. Ray, M.C.: Optimal control of laminated shells using piezoelectric sensor and actuator layers. AIAA J. 41(6), 1151–1157 (2003)CrossRefGoogle Scholar
  43. Ray, M.C.: Micromechanics of piezoelectric composites with improved effective piezoelectric constant. Int. J. Mech. Mater. Design 3(4), 361–371 (2006)CrossRefGoogle Scholar
  44. Ray, M.C., Baz, A.: Optimization of energy dissipation of active constrained layer damping treatments of plates. J. Sound Vib. 208(3), 391–406 (1997)CrossRefGoogle Scholar
  45. Ray, M.C., Faye, A.: Active structural-acoustic control of laminated composite plates using vertically/obliquely reinforced 1–3 piezoelectric composite patch. Int. J. Mech. Mater. Design 5(2), 123 (2009)CrossRefGoogle Scholar
  46. Ray, M.C., Mallik, N.: Performance of smart damping treatment using piezoelectric fiber reinforced composites. AIAA J. 43(1), 184–193 (2005)CrossRefGoogle Scholar
  47. Ray, M.C., Pradhan, A.K.: The performance of vertically reinforced 1–3 piezoelectric composites in active damping of smart structures. Smart Mater. Struct. 15(2), 631 (2006)CrossRefGoogle Scholar
  48. Ray, M.C., Rao, K.M., Samanta, B.: Exact solution for static analysis of an intelligent structure under cylindrical bending. Comput. Struct. 47(6), 1031–1042 (1993)CrossRefzbMATHGoogle Scholar
  49. Ray, M.C., Faye, A., Patra, S., Bhattacharyya, R.: Theoretical and experimental investigations on the active structural–acoustic control of a thin plate using a vertically reinforced 1-3 piezoelectric composite. Smart Mater. Struct. 18(1), 015012 (2008)CrossRefGoogle Scholar
  50. Reddy, J.N.: Mechanics of Laminated Composite Plates: Theory and Analysis. CRC Press, Boca Raton (1997)zbMATHGoogle Scholar
  51. Ro, J., Baz, A.: Optimum placement and control of active constrained layer damping using modal strain energy approach. J. Vib. Control 8(6), 861–876 (2002)zbMATHGoogle Scholar
  52. Ross, D., Ungar, E.E., Kerwin, E.M.: Flexural vibrations by means of viscoelastic laminate. ASME Struct. Damping, 48–87 (1959)Google Scholar
  53. Sarangi, S.K., Ray, M.C.: Active damping of geometrically nonlinear vibrations of laminated composite shallow shells using vertically/obliquely reinforced 1-3 piezoelectric composites. Int. J. Mech. Mater. Design 7(1), 29–44 (2011)CrossRefzbMATHGoogle Scholar
  54. Smith, W.A., Auld, B.A.: Modeling 1–3 composite piezoelectrics: thickness-mode oscillations. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 38(1), 40–47 (1991)CrossRefGoogle Scholar
  55. Talebitooti, R., Daneshjoo, K., Jafari, S.A.M.: Optimal control of laminated plate integrated with piezoelectric sensor and actuator considering TSDT and meshfree method. Eur. J. Mech. A/Solids 55, 199–211 (2016)MathSciNetCrossRefGoogle Scholar
  56. Tan, P., Tong, L.: A micro-electromechanics model for the 3-D PFRC materials. J. Compos. Mater. 36(2), 127–141 (2002)CrossRefGoogle Scholar
  57. Xiao, J.R., McCarthy, M.A.: Meshless analysis of Timoshenko beams based on a locking-free formulation and variational approaches. Comput. Methods Appl. Mech. Eng. 192(39), 4403–4424 (2003)CrossRefzbMATHGoogle Scholar
  58. Zhang, R., Feng, W.: Optimal placement of piezo actuators on a beam: a dynamic problem from stochastic to deterministic. Int. J. Mech. Mater. Design 6(3), 189–195 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringIndian Institute of TechnologyKharagpurIndia

Personalised recommendations