Skip to main content
Log in

On deformation of functionally graded narrow beams under transverse loads

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

Solution is obtained for functionally graded (FG) narrow beams under plane stress condition of elasticity by using the mixed semi analytical model developed by Kant et al. (Int J Comput Methods Eng Sci Mech 8(3): 165–177, 2007a). The mathematical model consists in defining a two-point boundary value problem (BVP) governed by a set of coupled first-order ordinary differential equations (ODEs) in the beam thickness direction. Analytical solutions based on two dimensional (2D) elasticity, one dimensional (1D) first order shear deformation theory (FOST) and a new 1D higher order shear-normal deformation theory (HOSNT) are also established to show the accuracy, simplicity and effectiveness of the developed mixed semi analytical model. It is observed from the numerical investigation that the present mixed semi analytical model predicts structural response as good as the one given by the elasticity analytical solution which in turn proves the robustness of the present development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bian, Z.G., Chen, W.Q., Lim, C.W., Zhang, N.: Analytical solution for single and multi span functionally graded plates in cylindrical bending. Int. J. Solids Struct. 42, 6433–6456 (2005)

    Article  MATH  Google Scholar 

  • Bodaghi, M., Saidi, A.R.: Levy-type solution for bending analysis of thick functionally graded rectangular plates based on the higher-order shear deformation plate theory. Appl. Math. Model. 34, 3659–3670 (2010)

    Article  Google Scholar 

  • Chakraborty, A., Gopalakrishnan, S.: A new beam finite element for the analysis of functionally graded materials. Int. J. Mech. Sci. 45, 519–539 (2003a)

    Article  MATH  Google Scholar 

  • Chakraborty, A., Gopalakrishnan, S.: A spectrally formulated finite element for wave propagation analysis in functionally graded beams. Int. J. Solids Struct. 40, 2421–2448 (2003b)

    Article  MATH  Google Scholar 

  • Ching, H.K., Chen, J.K.: Thermomechanical analysis of functionally graded composites under laser heating by the MLPG methods. Comput. Model. Eng. Sci. 13(3), 199–218 (2006)

    MathSciNet  Google Scholar 

  • Han, F., Pan, E., Roy, A.K., Yue, Z.Q.: Response of piezoelectric, transversely isotropic, functionally graded and multilayered half spaces to uniform circular surface loadings. Comput. Model. Eng. Sci. 14(1), 15–30 (2006)

    Google Scholar 

  • Kang, Y.A., Li, X.F.: Bending of functionally graded cantilever beam with power-law non-linearity subjected to an end force. Int. J. Non Linear Mech. 44, 696–703 (2009)

    Article  Google Scholar 

  • Kant, T.: Numerical analysis of thick plates. Comput. Methods Appl. Mech. Eng. 31(3), 1–18 (1982)

    Article  MATH  Google Scholar 

  • Kant, T., Manjunatha, B.S.: An unsymmetric FRC laminate C0 finite element model with 12 degrees of freedom per node. Eng. Comput. 5(3), 300–308 (1998)

    Google Scholar 

  • Kant, T., Ramesh, C.K.: Numerical integration of linear boundary value problems in solid mechanics by segmentation method. Int. J. Numer. Methods Eng. 17, 1233–1256 (1981)

    Article  MATH  Google Scholar 

  • Kant, T., Owen, D.R.J., Zienkiwicz, O.C.: A refined higher-order C0 plate bending element. Comput. Struct. 15(2), 177–183 (1982)

    Article  MATH  Google Scholar 

  • Kant, T., Pendhari, S.S., Desai, Y.M.: On accurate stress analysis of composite and sandwich narrow beams. Int. J. Comput. Methods Eng. Sci. Mech. 8(3), 165–177 (2007a)

    Article  MATH  MathSciNet  Google Scholar 

  • Kant, T., Pendhari, S.S., Desai, Y.M.: A general partial discretization methodology for interlaminar stress computation in composite laminates. Comput. Model. Eng. Sci. 17(2), 135–161 (2007b)

    MATH  Google Scholar 

  • Khabbaz, R.S., Manshadi, B.D., Abedian, A.: Nonliear analysis of FGM Plates under pressure loads using the higher-order shear deformation theories. Composite Struct. 89, 333–344 (2009)

    Article  Google Scholar 

  • Koizumi, M.: The concept of FGM. Ceramic transactions. Funct. Gradient Mater. 34, 3–10 (1993)

    Google Scholar 

  • Lee, H.J.: Layerwise analysis of thermal shape control in graded piezoelectric beams. ASME Aerosp. Division (Publication) AD 68, 79–87 (2003)

    Google Scholar 

  • Matsunaga, H.: Stress analysis of functionally graded plates subjected to thermal and mechanical loading. Composite Struct. 87, 344–357 (2009)

    Article  Google Scholar 

  • Nguyen, T.K., Sab, K., Bonnet, G.: First-order shear deformation plate models for functionally graded materials. Compos. Mater. 83, 25–36 (2008)

    Google Scholar 

  • Reddy, J.N.: Analysis of functionally graded plates. Int. J. Numer. Methods Eng. 47, 663–684 (2000)

    Article  MATH  Google Scholar 

  • Sankar, B.V.: An elasticity solution for functionally graded beam. Compos. Sci. Technol. 61, 689–696 (2001)

    Article  Google Scholar 

  • Sankar, B.V., Tzeng, J.T.: Thermal stresses in functionally graded beams. AIAA J. 410(6), 1228–1232 (2002)

    Article  Google Scholar 

  • Sladek, J., Slasek, V., Zhang, Ch.: The MLPG method for crack analysis in anisotropic functionally graded materials. Struct. Integr. Durab. 1(2), 131–144 (2005)

    Google Scholar 

  • Soldatos, K.P., Liu, S.L.: On the generalised plane strain deformations of thick anisotropic composite laminated plates. Int. J. Solids Struct. 38, 479–482 (2001)

    Article  Google Scholar 

  • Thomson, W.T.: Transmission of elastic waves through a stratified solid medium. J. Appl. Phys. 21, 89–93 (1950)

    Article  MATH  MathSciNet  Google Scholar 

  • Vel, S.S., Batra, R.C.: Analytical solution for rectangular thick laminated plates subjected to arbitrary boundary conditions. AIAA J. 37, 1464–1473 (1999)

    Article  Google Scholar 

  • Woo, J., Meguid, S.A.: Nonlinear analysis of functionally graded plates and shells. Int. J. Solids Struct. 38, 7409–7421 (2001)

    Article  MATH  Google Scholar 

  • Woo, J., Meguid, S.A., Stranart, J.C., Liew, K.M.: Thermomechanical postbuckling analysis of moderately thick functionally graded plates and shallow shells. Int. J. Mech. Sci. 47, 1147–1171 (2005)

    Article  MATH  Google Scholar 

  • Yamanouchi, M., Koizumi, M., Shiota, T. Proceedings of the first international symposium on functionally gradient materials, Sendai, Japan (1990)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep S. Pendhari.

Appendix

Appendix

The elements of matrix [A] are,

$$ \begin{aligned} [A] & = \int\limits_{o}^{h} {\left[ {\begin{array}{*{20}c} {\,\,\,\,\,C_{11} } & {\,\,z\,C_{11} } & {z^{2} C_{11} } & {z^{3} C_{11} } & {\,\,\,C_{13} } & {\,\,z\,C_{13} } & {z^{2} C_{13} } \\ {\,\,z\,C_{11} } & {z^{2} C_{11} } & {z^{3} C_{11} } & {z^{4} C_{11} } & {\,z\,C_{13} } & {z^{2} C_{13} } & {z^{3} C_{13} } \\ {z^{2} C_{11} } & {z^{3} C_{11} } & {z^{4} C_{11} } & {z^{5} C_{11} } & {z^{2} C_{13} } & {z^{3} C_{13} } & {z^{4} C_{13} } \\ {z^{3} C_{11} } & {z^{4} C_{11} } & {z^{5} C_{11} } & {z^{6} C_{11} } & {z^{3} C_{13} } & {z^{4} C_{13} } & {z^{5} C_{13} } \\ {\,\,\,\,\,C_{13} } & {\,z\,C_{13} } & {z^{2} C_{13} } & {z^{3} C_{13} } & {\,\,\,\,\,C_{33} } & {\,\,z\,C_{33} } & {z^{2} C_{33} } \\ {\,z\,C_{13} } & {z^{2} C_{13} } & {z^{3} C_{13} } & {z^{4} C_{13} } & {\,\,z\,C_{33} } & {z^{2} C_{33} } & {z^{3} C_{33} } \\ {z^{2} C_{13} } & {z^{3} C_{13} } & {z^{4} C_{13} } & {z^{5} C_{13} } & {z^{2} C_{33} } & {z^{3} C_{33} } & {z^{4} C_{33} } \\ \end{array} } \right]\,dz} \\ \;\;\,\,\,\, = A_{ij} (i,\,j = 1\,{\text{ to}}\,{ 7)} \\ \end{aligned} $$

and the coefficients are,

$$ \begin{gathered} A_{11} = {\frac{{\bar{E}_{h} - \bar{E}_{o} }}{\lambda }} \quad A_{12} = {\frac{{h\bar{E}_{h} - A_{11} }}{\lambda }} \quad A_{13} = {\frac{{h^{2} \bar{E}_{h} - 2A_{12} }}{\lambda }} \quad A_{14} = {\frac{{h^{3} \bar{E}_{h} - 3A_{13} }}{\lambda }} \quad \hfill \\ A_{15} = \upsilon A_{11} \quad A_{16} = \upsilon A_{12}\quad A_{17} = \upsilon A_{13} \hfill \\ \quad A_{22} = A_{13} \quad A_{23} = A_{14} \quad A_{24} = {\frac{{h^{4} \bar{E}_{h} - 4A_{23} }}{\lambda }} \quad A_{25} = \upsilon A_{21} \quad \hfill \\ \quad A_{26} = \upsilon A_{22} \quad A_{27} = \upsilon A_{23} \quad \hfill \\ A_{33} = A_{24} \quad A_{34} = {\frac{{h^{5} \bar{E}_{h} - 5A_{33} }}{\lambda }} \quad A_{35} = \upsilon A_{31} \quad A_{36} = \upsilon A_{32} \quad \hfill \\ A_{37} = \upsilon A_{33} \hfill \\ A_{44} = {\frac{{h^{6} \bar{E}_{h} - 6A_{43} }}{\lambda }} \quad A_{45} = \upsilon A_{41} \quad A_{46} = \upsilon A_{42} \quad A_{47} = \upsilon A_{43} \, \hfill \\ A_{55} = A_{11} \quad A_{56} = A_{12} \quad A_{57} = A_{13\,} \hfill \\ A_{66} = A_{22} \quad A_{67} = A_{23} \hfill \\ \quad A_{77} = A_{33} \hfill \\ \end{gathered} $$

where, \( \bar{E}_{h} = \left( {{\frac{{E_{o} }}{{1 - \upsilon^{2} }}}} \right)e^{\lambda } {\text{ and }}\bar{E}_{o} = {\frac{{E_{o} }}{{(1 - \upsilon^{2} )}}} \)

and A ij  = A ji (i, j = 1 to 7)

The elements of matrix [D] are,

$$ \begin{gathered} \left[ D \right] = \int\limits_{o}^{h} {\left[ {\begin{array}{*{20}c} {\,\,C_{44} } & {\,z\,C_{44} } & {z^{2} C_{44} } & {z^{3} C_{44} } \\ {z\,C_{44} } & {z^{2} C_{44} } & {z^{3} C_{44} } & {z^{4} C_{44} } \\ {z^{2} C_{44} } & {z^{3} C_{44} } & {z^{4} C_{44} } & {z^{5} C_{44} } \\ {z^{3} C_{44} } & {z^{4} C_{44} } & {z^{5} C_{44} } & {z^{6} C_{44} } \\ \end{array} } \right]\,dz} \hfill \\ \hfill \\ \,\,\,\,\,\,\,\, = \,D_{ij} \,\, (i,\,j = 1\,{\text{ to}}\, \, 4 )\hfill \\ \end{gathered} $$

and the coefficients are,

$$ \begin{gathered} D_{11} = {\frac{1 - \upsilon }{2}}A_{11} \quad D_{12} = {\frac{1 - \upsilon }{2}}A_{12} \quad D_{13} = {\frac{1 - \upsilon }{2}}A_{13} \quad D_{14} = {\frac{1 - \upsilon }{2}}A_{14} \hfill \\ \quad D_{22} = {\frac{1 - \upsilon }{2}}A_{22} \quad D_{23} = {\frac{1 - \upsilon }{2}}A_{23} \quad D_{24} = {\frac{1 - \upsilon }{2}}A_{24} \quad \hfill \\ \quad D_{33} = {\frac{1 - \upsilon }{2}}A_{33} \quad D_{34} = {\frac{1 - \upsilon }{2}}A_{34} \, \hfill \\ D_{44} = {\frac{1 - \upsilon }{2}}A_{44} \hfill \\ \end{gathered} $$

and D ij  = D ji , (i, j = 1 to 4)

The coefficients of matrix [X] are,

$$ \begin{gathered} X_{11} = A_{11} \left( {{\frac{m\pi }{L}}} \right)^{2} \quad X_{12} = 0 \quad X_{13} = A_{12} \left( {{\frac{m\pi }{L}}} \right)^{2} \quad \hfill \\ X_{14} = - A_{15} \left( {{\frac{m\pi }{L}}} \right) \quad X_{15} = A_{13} \left( {{\frac{m\pi }{L}}} \right)^{2} \quad X_{16} = - 2A_{16} \left( {{\frac{m\pi }{L}}} \right)\,\,\,\, \hfill \\ \quad X_{17} = A_{14} \left( {{\frac{m\pi }{L}}} \right)^{2} \quad X_{18} = - 3A_{17} \left( {{\frac{m\pi }{L}}} \right)\,\, \hfill \\ \end{gathered} $$
$$ \begin{gathered} X_{22} = D_{11} \left( {{\frac{m\pi }{L}}} \right)^{2} \quad X_{23} = D_{11} \left( {{\frac{m\pi }{L}}} \right) \quad X_{24} = D_{12} \left( {{\frac{m\pi }{L}}} \right)^{2} \,\,\,\, \hfill \\ X_{25} = 2D_{12} \left( {{\frac{m\pi }{L}}} \right)\quad X_{26} = D_{13} \left( {{\frac{m\pi }{L}}} \right)^{2} \quad X_{27} = 3D_{13} \left( {{\frac{m\pi }{L}}} \right)\,\,\,\, \hfill \\ X_{28} = D_{14} \left( {{\frac{m\pi }{L}}} \right)^{2} \, \hfill \\ \end{gathered} $$
$$ \begin{gathered} X_{33} = A_{22} \left( {{\frac{m\pi }{L}}} \right)^{2} + D_{11} \quad X_{34} = \left( { - A_{25} + D_{12} } \right)\left( {{\frac{m\pi }{L}}} \right) \quad X_{35} = A_{23} \left( {{\frac{m\pi }{L}}} \right)^{2} + 2D_{12} \hfill \\ X_{36} = \left( { - 2A_{26} + D_{13} } \right)\left( {{\frac{m\pi }{L}}} \right)\quad X_{37} = A_{24} \left( {{\frac{m\pi }{L}}} \right)^{2} + 3D_{13} \quad X_{38} = \left( { - 3A_{27} + D_{14} } \right)\left( {{\frac{m\pi }{L}}} \right) \hfill \\ \end{gathered} $$
$$ \begin{gathered} X_{44} = A_{55} + D_{22} \left( {{\frac{m\pi }{L}}} \right)^{2} \quad X_{45} = \left( { - A_{53} + 2D_{22} } \right)\left( {{\frac{m\pi }{L}}} \right) \quad X_{46} = 2A_{56} + D_{23} \left( {{\frac{m\pi }{L}}} \right)^{2} \hfill \\ X_{47} = \left( { - A_{54} + 3D_{23} } \right)\left( {{\frac{m\pi }{L}}} \right) \quad X_{48} = 3A_{57} + D_{24} \left( {{\frac{m\pi }{L}}} \right)^{2}\quad \hfill \\ \end{gathered} $$
$$ \begin{gathered} X_{55} = A_{33} \left( {{\frac{m\pi }{L}}} \right)^{2} + 4D_{22} \quad X_{56} = \left( { - 2A_{36} + 2D_{23} } \right)\left( {{\frac{m\pi }{L}}} \right)\quad X_{57} = A_{34} \left( {{\frac{m\pi }{L}}} \right)^{2} + 6D_{23} \quad \hfill \\ X_{58} = \left( { - 3A_{37} + 2D_{24} } \right)\left( {{\frac{m\pi }{L}}} \right) \hfill \\ \end{gathered} $$
$$ X_{66} = 4A_{66} + D_{33} \left( {{\frac{m\pi }{L}}} \right)^{2}\quad X_{67} = \left( { - 2A_{64} + 3D_{33} } \right)\left( {{\frac{m\pi }{L}}} \right) \quad X_{68} = 6A_{67} + D_{34} \left( {{\frac{m\pi }{L}}} \right)^{2} $$
$$ X_{77} = A_{44} \left( {{\frac{m\pi }{L}}} \right)^{2} + 9D_{13} \quad X_{78} = \left( { - 3A_{47} + 3D_{24} } \right)\left( {{\frac{m\pi }{L}}} \right)$$
$$ X_{88} = 9A_{77} + D_{44} \left( {{\frac{m\pi }{L}}} \right)^{2} $$

and X ij  = X ji , (i,j = 1 to 8)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pendhari, S.S., Kant, T., Desai, Y.M. et al. On deformation of functionally graded narrow beams under transverse loads. Int J Mech Mater Des 6, 269–282 (2010). https://doi.org/10.1007/s10999-010-9136-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-010-9136-0

Keywords

Navigation