Skip to main content
Log in

Nuclear tropomyosin and troponin in striated muscle: new roles in a new locale?

  • Original Paper
  • Published:
Journal of Muscle Research and Cell Motility Aims and scope Submit manuscript

Abstract

Tropomyosin and troponin have well known Ca2+-regulatory functions in the striated muscle sarcomere. In this review, we summarize experimental evidence that tropomyosin and troponin are localized, with as yet unidentified functional roles, in the striated muscle cell nucleus. We also apply bioinformatics approaches that predict localization of some tropomyosin and troponin to the nucleus, and that SUMOylation could be a covalent modification that modulates their nuclear localization and function. Further, we provide examples of cardiomyopathy mutations that alter the predicted likelihood of nuclear localization and SUMOylation of tropomyosin. These observations suggest novel mechanisms by which cardiomyopathy mutations in tropomyosin and troponin might alter not only cardiac contractility but also nuclear function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. WoLF PSORT does not explicitly account for phosphorylation state or other covalent modifications of proteins in predictions of subcellular localization.

  2. Protein sequences aligned with EMBL-EBI Clustal Omega Multiple Sequence Alignment using default parameters.

  3. Protein sequences aligned with NCBI Cobalt Multiple Alignment Tool using default parameters (Papadopoulos and Agarwala 2007).

  4. 2′-Deoxyadenosine-5′-triphosphate (dATP) is the nucleotide that is incorporated into DNA and is missing a 2′ oxygen compared with adenosine-5′-triphosphate (ATP), which is the nucleotide that is incorporated into RNA and is the conventional substrate for actomyosin along with many other energy-requiring processes in cells.

Abbreviations

cTn:

Cardiac troponin complex

cTnC:

Cardiac troponin C

cTnI:

Cardiac troponin I

cTnT:

Cardiac troponin T

dATP:

2′-Deoxyadenosine 5′-triphosphate

PML bodies:

Nuclear promyelocytic leukemia protein bodies (nuclear dots)

sTn:

Skeletal troponin complex

sTnC:

Skeletal troponin C

sTnI:

Skeletal troponin I

sTnT:

Skeletal troponin T

SUMO:

Small ubiquitin-like modifier protein

SUMO1:

SUMO isoform 1

SUMO2:

SUMO isoform 2

SUMO3:

SUMO isoform 3

Tm:

Tropomyosin

Tn:

Troponin complex

References

  • Ahmad F, Seidman JG, Seidman CE (2005) The genetic basis for cardiac remodeling. Annu Rev Genomics Hum Genet 6:185–216

    Article  PubMed  CAS  Google Scholar 

  • Andrade V, Guerra M, Jardim C, Melo F, Silva W, Ortega JM, Robert M, Nathanson MH, Leite F (2011) Nucleoplasmic calcium regulates cell proliferation through legumain. J Hepatol 55(3):626–635

    Google Scholar 

  • Asumda FZ, Chase PB (2012) Nuclear cardiac troponin and tropomyosin are expressed early in cardiac differentiation of rat mesenchymal stem cells. Differentiation 83(3):106–115

    Article  PubMed  CAS  Google Scholar 

  • Baarlink C, Wang H, Grosse R (2013) Nuclear actin network assembly by formins regulates the SRF coactivator MAL. Science 340(6134):864–867

    Article  PubMed  CAS  Google Scholar 

  • Bai F, Weis A, Takeda AK, Chase PB, Kawai M (2011) Enhanced active cross-bridges during diastole: molecular pathogenesis of tropomyosin’s HCM mutations. Biophys J 100(4):1014–1023

    Article  PubMed  CAS  Google Scholar 

  • Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabé-Heider F, Walsh S, Zupicich J, Alkass K, Buchholz BA, Druid H, Jovinge S, Frisén J (2009) Evidence for cardiomyocyte renewal in humans. Science 324(5923):98–102

    Article  PubMed  CAS  Google Scholar 

  • Bergmann O, Zdunek S, Alkass K, Druid H, Bernard S, Frisén J (2011) Identification of cardiomyocyte nuclei and assessment of ploidy for the analysis of cell turnover. Exp Cell Res 317(2):188–194

    Article  PubMed  CAS  Google Scholar 

  • Berry JM, Le V, Rotter D, Battiprolu PK, Grinsfelder B, Tannous P, Burchfield JS, Czubryt M, Backs J, Olson EN, Rothermel BA, Hill JA (2011) Reversibility of adverse, calcineurin-dependent cardiac remodeling. Circ Res 109(4):407–417

    Article  PubMed  CAS  Google Scholar 

  • Bing W, Redwood CS, Purcell IF, Esposito G, Watkins H, Marston SB (1997) Effects of two hypertrophic cardiomyopathy mutations in α-tropomyosin, Asp175Asn and Glu180Gly, on Ca2+ regulation of thin filament motility. Biochem Biophys Res Commun 236:760–764

    Article  PubMed  CAS  Google Scholar 

  • Brunet NM, Mihajlović G, Aledealat K, Wang F, Xiong P, von Molnár S, Chase PB (2012) Micromechanical thermal assays of Ca2+-regulated thin-filament function and modulation by hypertrophic cardiomyopathy mutants of human cardiac troponin. J Biomed Biotechnol 2012:657523

    Article  PubMed  Google Scholar 

  • Chang AN, Harada K, Ackerman MJ, Potter JD (2005) Functional consequences of hypertrophic and dilated cardiomyopathy-causing mutations in α-tropomyosin. J Biol Chem 280(40):34343–34349

    Article  PubMed  CAS  Google Scholar 

  • Clemmens EW, Regnier M (2004) Skeletal regulatory proteins enhance thin filament sliding speed and force by skeletal HMM. J Muscle Res Cell Motil 25(7):515–525

    Article  PubMed  CAS  Google Scholar 

  • de Lanerolle P, Cole AB (2002) Cytoskeletal proteins and gene regulation: form, function, and signal transduction in the nucleus. Sci STKE (139):pe30

  • de Lanerolle P, Serebryannyy L (2011) Nuclear actin and myosins: life without filaments. Nat Cell Biol 13(11):1282–1288

    Article  PubMed  Google Scholar 

  • Dingová H, Fukalová J, Maninová M, Philimonenko VV, Hozák P (2009) Ultrastructural localization of actin and actin-binding proteins in the nucleus. Histochem Cell Biol 131(3):425–434

    Article  PubMed  Google Scholar 

  • Dittmer TA, Stacey NJ, Sugimoto-Shirasu K, Richards EJ (2007) LITTLE NUCLEI genes affecting nuclear morphology in Arabidopsis thaliana. Plant Cell 19(9):2793–2803

    Article  PubMed  CAS  Google Scholar 

  • Escobar M, Cardenas C, Colavita K, Petrenko NB, Franzini-Armstrong C (2011) Structural evidence for perinuclear calcium microdomains in cardiac myocytes. J Mol Cell Cardiol 50(3):451–459

    Article  PubMed  CAS  Google Scholar 

  • Franklin S, Zhang MJ, Chen H, Paulsson AK, Mitchell-Jordan SA, Li Y, Ping P, Vondriska TM (2011) Specialized compartments of cardiac nuclei exhibit distinct proteomic anatomy. Mol Cell Proteomics 10(1):M110.000703

    Article  PubMed  Google Scholar 

  • Gafurov B, Fredricksen S, Cai A, Brenner B, Chase PB, Chalovich JM (2004) The Δ14 mutant of troponin T enhances ATPase activity and alters the cooperative binding of S1-ADP to regulated actin. Biochemistry 43(48):15276–15285

    Article  PubMed  CAS  Google Scholar 

  • Gardiner J, Overall R, Marc J (2011) Putative Arabidopsis homologues of metazoan coiled-coil cytoskeletal proteins. Cell Biol Int 35(8):767–774

    Article  PubMed  CAS  Google Scholar 

  • Geiss-Friedlander R, Melchior F (2007) Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol 8(12):947–956

    Article  PubMed  CAS  Google Scholar 

  • Golitsina N, An Y, Greenfield NJ, Thierfelder L, Iizuka K, Seidman JG, Seidman CE, Lehrer SS, Hitchcock-DeGregori SE (1999) Effects of two familial hypertrophic cardiomyopathy-causing mutations on α-tropomyosin structure and function. Biochemistry 38(12):3850

    Article  PubMed  CAS  Google Scholar 

  • Gomes AV, Potter JD (2004) Molecular and cellular aspects of troponin cardiomyopathies. Ann NY Acad Sci 1015:214–224

    Article  PubMed  CAS  Google Scholar 

  • Gordon AM, LaMadrid M, Chen Y, Luo Z, Chase PB (1997) Calcium regulation of skeletal muscle thin filament motility in vitro. Biophys J 72:1295–1307

    Article  PubMed  CAS  Google Scholar 

  • Gordon AM, Chen Y, Liang B, LaMadrid M, Luo Z, Chase PB (1998) Skeletal muscle regulatory proteins enhance F-actin in vitro motility. Adv Exp Med Biol 453:187–197

    PubMed  CAS  Google Scholar 

  • Gordon AM, Homsher E, Regnier M (2000) Regulation of contraction in striated muscle. Physiol Rev 80:853–924

    PubMed  CAS  Google Scholar 

  • Grummt I (2006) Actin and myosin as transcription factors. Curr Opin Genet Dev 16(2):191–196

    Article  PubMed  CAS  Google Scholar 

  • Herrmann J, Lerman LO, Lerman A (2007) Ubiquitin and ubiquitin-like proteins in protein regulation. Circ Res 100(9):1276–1291

    Article  PubMed  CAS  Google Scholar 

  • Hofmann WA, Arduini A, Nicol SM, Camacho CJ, Lessard JL, Fuller-Pace FV, de Lanerolle P (2009) SUMOylation of nuclear actin. J Cell Biol 186(2):193–200

    Article  PubMed  CAS  Google Scholar 

  • Homsher E, Kim B, Bobkova A, Tobacman LS (1996) Calcium regulation of thin filament movement in an in vitro motility assay. Biophys J 70:1881–1892

    Article  PubMed  CAS  Google Scholar 

  • Homsher E, Lee DM, Morris C, Pavlov D, Tobacman LS (2000) Regulation of force and unloaded sliding speed in single thin filaments: effects of regulatory proteins and calcium. J Physiol 524(Pt 1):233–243

    Article  PubMed  CAS  Google Scholar 

  • Horton P, Park K-J, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res 35(Web Server issue):W585–W587

    Article  PubMed  Google Scholar 

  • Johnson ES (2004) Protein modification by SUMO. Annu Rev Biochem 73:355–382

    Article  PubMed  CAS  Google Scholar 

  • Kajstura J, Urbanek K, Perl S, Hosoda T, Zheng H, Ogórek B, Ferreira-Martins J, Goichberg P, Rondon-Clavo C, Sanada F, D’Amario D, Rota M, Del Monte F, Orlic D, Tisdale J, Leri A, Anversa P (2010) Cardiomyogenesis in the adult human heart. Circ Res 107(2):305–315

    Article  PubMed  CAS  Google Scholar 

  • Karibe A, Tobacman LS, Strand J, Butters C, Back N, Bachinski LL, Arai AE, Ortiz A, Roberts R, Homsher E, Fananapazir L (2001) Hypertrophic cardiomyopathy caused by a novel α-tropomyosin mutation (V95A) is associated with mild cardiac phenotype, abnormal calcium binding to troponin, abnormal myosin cycling, and poor prognosis. Circulation 103(1):65–71

    Article  PubMed  CAS  Google Scholar 

  • Kataoka A, Hemmer C, Chase PB (2007) Computational simulation of hypertrophic cardiomyopathy mutations in troponin I: influence of increased myocyte calcium sensitivity on isometric force, ATPase and [Ca2+]i. J Biomech 40(9):2044–2052

    Article  PubMed  Google Scholar 

  • Köhler J, Chen Y, Brenner B, Gordon AM, Kraft T, Martyn DA, Regnier M, Rivera AJ, Wang C-K, Chase PB (2003) Familial hypertrophic cardiomyopathy mutations in troponin I (K183Δ, G203S, K206Q) enhance filament sliding. Physiol Genomics 14(2):117–128

    PubMed  Google Scholar 

  • Korte FS, Dai J, Buckley K, Feest ER, Adamek N, Geeves MA, Murry CE, Regnier M (2011) Upregulation of cardiomyocyte ribonucleotide reductase increases intracellular 2 deoxy-ATP, contractility, and relaxation. J Mol Cell Cardiol 51(6):894–901

    Article  PubMed  CAS  Google Scholar 

  • Kremneva E, Boussouf S, Nikolaeva O, Maytum R, Geeves MA, Levitsky DI (2004) Effects of two familial hypertrophic cardiomyopathy mutations in α-tropomyosin, Asp175Asn and Glu180Gly, on the thermal unfolding of actin-bound tropomyosin. Biophys J 87(6):3922–3933

    Article  PubMed  CAS  Google Scholar 

  • Laflamme MA, Murry CE (2011) Heart regeneration. Nature 473(7347):326–335

    Article  PubMed  CAS  Google Scholar 

  • Landstrom AP, Parvatiyar MS, Pinto JR, Marquardt ML, Bos JM, Tester DJ, Ommen SR, Potter JD, Ackerman MJ (2008) Molecular and functional characterization of novel hypertrophic cardiomyopathy susceptibility mutations in TNNC1-encoded troponin C. J Mol Cell Cardiol 45(2):281–288

    Article  PubMed  CAS  Google Scholar 

  • Li XE, Suphamungmee W, Janco M, Geeves MA, Marston SB, Fischer S, Lehman W (2012) The flexibility of two tropomyosin mutants, D175N and E180G, that cause hypertrophic cardiomyopathy. Biochem Biophys Res Commun 424:493–496

    Article  PubMed  CAS  Google Scholar 

  • Loong CKP, Zhou H-X, Chase PB (2012a) Familial hypertrophic cardiomyopathy related E180G mutation increases flexibility of human cardiac α-tropomyosin. FEBS Lett 586(19):3503–3507

    Article  PubMed  CAS  Google Scholar 

  • Loong CKP, Zhou H-X, Chase PB (2012b) Persistence length of human cardiac α-tropomyosin measured by single molecule direct probe microscopy. PLoS One 7(6):e39676

    Article  PubMed  CAS  Google Scholar 

  • Ly S, Lehrer SS (2012) Long-range effects of familial hypertrophic cardiomyopathy mutations E180G and D175N on the properties of tropomyosin. Biochemistry 51(32):6413–6420

    Article  PubMed  CAS  Google Scholar 

  • Mandavia CH, Pulakat L, DeMarco V, Sowers JR (2012) Over-nutrition and metabolic cardiomyopathy. Metabolism 61(9):1205–1210

    Article  PubMed  CAS  Google Scholar 

  • Manza LL, Codreanu SG, Stamer SL, Smith DL, Wells KS, Roberts RL, Liebler DC (2004) Global shifts in protein sumoylation in response to electrophile and oxidative stress. Chem Res Toxicol 17(12):1706–1715

    Article  PubMed  CAS  Google Scholar 

  • Marston SB (2011) How do mutations in contractile proteins cause the primary familial cardiomyopathies? J Cardiovasc Transl Res 4(3):245–255

    Article  PubMed  Google Scholar 

  • Masuda K, Xu Z-J, Takahashi S, Ito A, Ono M, Nomura K, Inoue M (1997) Peripheral framework of carrot cell nucleus contains a novel protein predicted to exhibit a long α-helical domain. Exp Cell Res 232(1):173–181

    Article  PubMed  CAS  Google Scholar 

  • Mathur MC, Chase PB, Chalovich JM (2011) Several cardiomyopathy causing mutations on tropomyosin either destabilize the active state of actomyosin or alter the binding properties of tropomyosin. Biochem Biophys Res Commun 406(1):74–78

    Article  PubMed  CAS  Google Scholar 

  • McDonald D, Carrero G, Andrin C, de Vries G, Hendzel MJ (2006) Nucleoplasmic β-actin exists in a dynamic equilibrium between low-mobility polymeric species and rapidly diffusing populations. J Cell Biol 172(4):541–552

    Article  PubMed  CAS  Google Scholar 

  • Michele DE, Albayya FP, Metzger JM (1999) Direct, convergent hypersensitivity of calcium-activated force generation produced by hypertrophic cardiomyopathy mutant α-tropomyosins in adult cardiac myocytes. Nat Med 5(12):1413–1417

    Article  PubMed  CAS  Google Scholar 

  • Minamikawa T, Takahashi A, Fujita S (1995) Differences in features of calcium transients between the nucleus and the cytosol in cultured heart muscle cells: analyzed by confocal microscopy. Cell Calcium 17(3):167–176

    Article  PubMed  CAS  Google Scholar 

  • Miralles F, Visa N (2006) Actin in transcription and transcription regulation. Curr Opin Cell Biol 18(3):261–266

    Article  PubMed  CAS  Google Scholar 

  • Misteli T, Spector DL (eds) (2011) The nucleus. Cold Spring Harbor Laboratory Press, Woodbury

    Google Scholar 

  • Nowakowski SG, Kolwicz SC, Korte FS, Luo Z, Robinson-Hamm JN, Page JL, Brozovich F, Weiss RS, Tian R, Murry CE, Regnier M (2013) Transgenic overexpression of ribonucleotide reductase improves cardiac performance. Proc Natl Acad Sci USA 110(15):6187–6192

    Article  PubMed  CAS  Google Scholar 

  • Papadopoulos JS, Agarwala R (2007) COBALT: constraint-based alignment tool for multiple protein sequences. Bioinformatics 23(9):1073–1079

    Article  PubMed  CAS  Google Scholar 

  • Park S, Yang J-S, Shin Y-E, Park J, Jang SK, Kim S (2011) Protein localization as a principal feature of the etiology and comorbidity of genetic diseases. Mol Syst Biol 7:494

    Article  PubMed  Google Scholar 

  • Parmacek MS, Solaro RJ (2004) Biology of the troponin complex in cardiac myocytes. Prog Cardiovasc Dis 47(3):159–176

    Article  PubMed  CAS  Google Scholar 

  • Pestic-Dragovich L, Stojiljkovic L, Philimonenko AA, Nowak G, Ke Y, Settlage RE, Shabanowitz J, Hunt DF, Hozak P, de Lanerolle P (2000) A myosin I isoform in the nucleus. Science 290(5490):337–341

    Article  PubMed  CAS  Google Scholar 

  • Phillips SK, Wiseman RW, Woledge RC, Kushmerick MJ (1993) Neither changes in phosphorus metabolite levels nor myosin isoforms can explain the weakness in aged mouse muscle. J Physiol 463:157–167

    PubMed  CAS  Google Scholar 

  • Prabhakar R, Boivin GP, Grupp IL, Hoit B, Arteaga G, Solaro JR, Wieczorek DF (2001) A familial hypertrophic cardiomyopathy α-tropomyosin mutation causes severe cardiac hypertrophy and death in mice. J Mol Cell Cardiol 33(10):1815–1828

    Article  PubMed  CAS  Google Scholar 

  • Prabhakar R, Petrashevskaya N, Schwartz A, Aronow B, Boivin GP, Molkentin JD, Wieczorek DF (2003) A mouse model of familial hypertrophic cardiomyopathy caused by a α-tropomyosin mutation. Mol Cell Biochem 251(1–2):33–42

    Article  PubMed  CAS  Google Scholar 

  • Racca AW, Beck AE, Rao VS, Flint GV, Lundy SD, Born DE, Bamshad MJ, Regnier M (2013) Contractility and kinetics of human fetal and human adult skeletal muscle. J Physiol 591(Pt 12):3049–3061

    PubMed  CAS  Google Scholar 

  • Reddy KK, Oitomen FM, Patel GP, Bag J (2005) Perinuclear localization of slow troponin C m RNA in muscle cells is controlled by a cis-element located at its 3′ untranslated region. RNA 11(3):294–307

    Article  PubMed  CAS  Google Scholar 

  • Regnier M, Homsher E (1998) The effect of ATP analogs on post hydrolytic and force development steps in skinned skeletal muscle fibers. Biophys J 74:3059–3071

    Article  PubMed  CAS  Google Scholar 

  • Regnier M, Martyn DA, Chase PB (1996) Calmidazolium alters Ca2+ regulation of tension redevelopment rate in skinned skeletal muscle. Biophys J 71:2786–2794

    Article  PubMed  CAS  Google Scholar 

  • Regnier M, Lee DM, Homsher E (1998a) ATP analogs and muscle contraction: mechanics and kinetics of nucleoside triphosphate binding and hydrolysis. Biophys J 74:3044–3058

    Article  PubMed  CAS  Google Scholar 

  • Regnier M, Martyn DA, Chase PB (1998b) Calcium regulation of tension redevelopment kinetics with 2-deoxy-ATP or low [ATP] in rabbit skeletal muscle. Biophys J 74:2005–2015

    Article  PubMed  CAS  Google Scholar 

  • Regnier M, Rivera AJ, Chen Y, Chase PB (2000) 2-deoxy-ATP enhances contractility of rat cardiac muscle. Circ Res 86(12):1211–1217

    Article  PubMed  CAS  Google Scholar 

  • Ren J, Gao X, Jin C, Zhu M, Wang X, Shaw A, Wen L, Yao X, Xue Y (2009) Systematic study of protein sumoylation: development of a site-specific predictor of SUMOsp 2.0. Proteomics 9(12):3409–3412

    Article  PubMed  CAS  Google Scholar 

  • Resende RR, Andrade LM, Oliveira AG, Guimarães ES, Guatimosim S, Leite MF (2013) Nucleoplasmic calcium signaling and cell proliferation: calcium signaling in the nucleus. Cell Commun Signal 11(1):14

    Google Scholar 

  • Sahota VK, Grau BF, Mansilla A, Ferrús A (2009) Troponin I and Tropomyosin regulate chromosomal stability and cell polarity. J Cell Sci 122(Pt 15):2623–2631

    Article  PubMed  CAS  Google Scholar 

  • Schoffstall B, Chase PB (2008) Increased intracellular [dATP] enhances cardiac contraction in embryonic chick cardiomyocytes. J Cell Biochem 104(6):2217–2227

    Article  PubMed  CAS  Google Scholar 

  • Schoffstall B, Brunet NM, Wang F, Williams S, Barnes AT, Miller VF, Compton LA, McFadden LA, Taylor DW, Dhanarajan R, Seavy M, Chase PB (2006a) Ca2+-sensitivity of regulated cardiac thin filament sliding does not depend on myosin isoform. J Physiol 577(Pt 3):935–944

    Article  PubMed  CAS  Google Scholar 

  • Schoffstall B, Clark A, Chase PB (2006b) Positive inotropic effects of low dATP/ATP ratios on mechanics and kinetics of porcine cardiac muscle. Biophys J 91(6):2216–2226

    Article  PubMed  CAS  Google Scholar 

  • Schoffstall B, LaBarbera VA, Brunet NM, Gavino BJ, Herring L, Heshmati S, Kraft BH, Inchausti V, Meyer NL, Moonoo D, Takeda AK, Chase PB (2011) Interaction between troponin and myosin enhances contractile activity of myosin in cardiac muscle. DNA Cell Biol 30(9):653–659

    Article  PubMed  CAS  Google Scholar 

  • Schulz EM, Wieczorek DF (2013) Tropomyosin de-phosphorylation in the heart: what are the consequences? J Muscle Res Cell Motil. doi:10.1007/s10974-013-9348-7

  • Shen TH, Lin H-K, Scaglioni PP, Yung TM, Pandolfi PP (2006) The mechanisms of PML-nuclear body formation. Mol Cell 24(3):331–339

    Article  PubMed  CAS  Google Scholar 

  • Solaro RJ, Kobayashi T (2011) Protein phosphorylation and signal transduction in cardiac thin filaments. J Biol Chem 286(12):9935–9940

    Article  PubMed  CAS  Google Scholar 

  • Spencer VA, Costes S, Inman JL, Xu R, Chen J, Hendzel MJ, Bissell MJ (2011) Depletion of nuclear actin is a key mediator of quiescence in epithelial cells. J Cell Sci 124(Pt 1):123–132

    Article  PubMed  CAS  Google Scholar 

  • Strickfaden H, Cremer T, Rippe K (2012) Higher order chromatin organization and dynamics. In: Rippe K (ed) Genome organization and function in the cell nucleus. Wiley-VCH, Weinheim, pp 417–447

    Google Scholar 

  • Tardiff JC (2011) Thin filament mutations: developing an integrative approach to a complex disorder. Circ Res 108(6):765–782

    Article  PubMed  CAS  Google Scholar 

  • Tobacman LS (1996) Thin filament-mediated regulation of cardiac contraction. Annu Rev Physiol 58:447–481

    Article  PubMed  CAS  Google Scholar 

  • Van Driest SL, Ellsworth EG, Ommen SR, Tajik AJ, Gersh BJ, Ackerman MJ (2003) Prevalence and spectrum of thin filament mutations in an outpatient referral population with hypertrophic cardiomyopathy. Circulation 108(4):445–451

    Article  PubMed  Google Scholar 

  • Visa N, Percipalle P (2010) Nuclear functions of actin. Cold Spring Harb Perspect Biol 2(4):a000620

    Article  PubMed  Google Scholar 

  • Wang J, Schwartz RJ (2010) Sumoylation and regulation of cardiac gene expression. Circ Res 107(1):19–29

    Article  PubMed  CAS  Google Scholar 

  • Wang F, Brunet NM, Grubich JR, Bienkiewicz E, Asbury TM, Compton LA, Mihajlović G, Miller VF, Chase PB (2011) Facilitated cross-bridge interactions with thin filaments by familial hypertrophic cardiomyopathy mutations in α-tropomyosin. J Biomed Biotechnol 2011:435271

    PubMed  Google Scholar 

  • Watkins H, Ashrafian H, Redwood C (2011) Inherited cardiomyopathies. N Engl J Med 364(17):1643–1656

    Article  PubMed  CAS  Google Scholar 

  • Willott RH, Gomes AV, Chang AN, Parvatiyar MS, Pinto JR, Potter JD (2010) Mutations in Troponin that cause HCM, DCM AND RCM: what can we learn about thin filament function? J Mol Cell Cardiol 48(5):882–892

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Bers DM (2006) Sarcoplasmic reticulum and nuclear envelope are one highly interconnected Ca2+ store throughout cardiac myocyte. Circ Res 99(3):283–291

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Zhang T, Bossuyt J, Li X, McKinsey TA, Dedman JR, Olson EN, Chen J, Brown JH, Bers DM (2006) Local InsP3-dependent perinuclear Ca2+ signaling in cardiac myocyte excitation-transcription coupling. J Clin Invest 116(3):675–682

    Article  PubMed  CAS  Google Scholar 

  • Yu C-S, Chen Y-C, Lu C-H, Hwang J-K (2006) Prediction of protein subcellular localization. Proteins 64(3):643–651

    Article  PubMed  CAS  Google Scholar 

  • Zhang T, Birbrair A, Delbono O (2013a) Nonmyofilament-associated troponin T3 nuclear and nucleolar localization sequence and leucine zipper domain mediate muscle cell apoptosis. Cytoskeleton 70(3):134–147

    Article  PubMed  CAS  Google Scholar 

  • Zhang T, Birbrair A, Wang ZM, Taylor J, Messi ML, Delbono O (2013b) Troponin T nuclear localization and its role in aging skeletal muscle. Age (Dordr) 35(2):353–370

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to many colleagues at The Florida State University, and colleagues and collaborators from elsewhere, for thoughtful discussions. We especially thank Dr. Thomas C.S. Keller III, Dr. Campion K.P. Loong, Dr. Myriam A. Badr and Faizal Z. Asumda for insightful discussions, and Matthew S. Shachner for assistance with initial bioinformatics analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Bryant Chase.

Additional information

Submitted as a review for the special issue on ‘Tropomyosin: form and function,’ S. Marston and M, Gautel, eds.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chase, P.B., Szczypinski, M.P. & Soto, E.P. Nuclear tropomyosin and troponin in striated muscle: new roles in a new locale?. J Muscle Res Cell Motil 34, 275–284 (2013). https://doi.org/10.1007/s10974-013-9356-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-013-9356-7

Keywords

Navigation