Nuclear tropomyosin and troponin in striated muscle: new roles in a new locale?

  • P. Bryant Chase
  • Mark P. Szczypinski
  • Elliott P. Soto
Original Paper


Tropomyosin and troponin have well known Ca2+-regulatory functions in the striated muscle sarcomere. In this review, we summarize experimental evidence that tropomyosin and troponin are localized, with as yet unidentified functional roles, in the striated muscle cell nucleus. We also apply bioinformatics approaches that predict localization of some tropomyosin and troponin to the nucleus, and that SUMOylation could be a covalent modification that modulates their nuclear localization and function. Further, we provide examples of cardiomyopathy mutations that alter the predicted likelihood of nuclear localization and SUMOylation of tropomyosin. These observations suggest novel mechanisms by which cardiomyopathy mutations in tropomyosin and troponin might alter not only cardiac contractility but also nuclear function.


Actin filament Calcium ion Nucleus SUMOylation Cardiomyopathy 



Cardiac troponin complex


Cardiac troponin C


Cardiac troponin I


Cardiac troponin T


2′-Deoxyadenosine 5′-triphosphate

PML bodies

Nuclear promyelocytic leukemia protein bodies (nuclear dots)


Skeletal troponin complex


Skeletal troponin C


Skeletal troponin I


Skeletal troponin T


Small ubiquitin-like modifier protein


SUMO isoform 1


SUMO isoform 2


SUMO isoform 3




Troponin complex



The authors are grateful to many colleagues at The Florida State University, and colleagues and collaborators from elsewhere, for thoughtful discussions. We especially thank Dr. Thomas C.S. Keller III, Dr. Campion K.P. Loong, Dr. Myriam A. Badr and Faizal Z. Asumda for insightful discussions, and Matthew S. Shachner for assistance with initial bioinformatics analyses.


  1. Ahmad F, Seidman JG, Seidman CE (2005) The genetic basis for cardiac remodeling. Annu Rev Genomics Hum Genet 6:185–216PubMedCrossRefGoogle Scholar
  2. Andrade V, Guerra M, Jardim C, Melo F, Silva W, Ortega JM, Robert M, Nathanson MH, Leite F (2011) Nucleoplasmic calcium regulates cell proliferation through legumain. J Hepatol 55(3):626–635Google Scholar
  3. Asumda FZ, Chase PB (2012) Nuclear cardiac troponin and tropomyosin are expressed early in cardiac differentiation of rat mesenchymal stem cells. Differentiation 83(3):106–115PubMedCrossRefGoogle Scholar
  4. Baarlink C, Wang H, Grosse R (2013) Nuclear actin network assembly by formins regulates the SRF coactivator MAL. Science 340(6134):864–867PubMedCrossRefGoogle Scholar
  5. Bai F, Weis A, Takeda AK, Chase PB, Kawai M (2011) Enhanced active cross-bridges during diastole: molecular pathogenesis of tropomyosin’s HCM mutations. Biophys J 100(4):1014–1023PubMedCrossRefGoogle Scholar
  6. Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabé-Heider F, Walsh S, Zupicich J, Alkass K, Buchholz BA, Druid H, Jovinge S, Frisén J (2009) Evidence for cardiomyocyte renewal in humans. Science 324(5923):98–102PubMedCrossRefGoogle Scholar
  7. Bergmann O, Zdunek S, Alkass K, Druid H, Bernard S, Frisén J (2011) Identification of cardiomyocyte nuclei and assessment of ploidy for the analysis of cell turnover. Exp Cell Res 317(2):188–194PubMedCrossRefGoogle Scholar
  8. Berry JM, Le V, Rotter D, Battiprolu PK, Grinsfelder B, Tannous P, Burchfield JS, Czubryt M, Backs J, Olson EN, Rothermel BA, Hill JA (2011) Reversibility of adverse, calcineurin-dependent cardiac remodeling. Circ Res 109(4):407–417PubMedCrossRefGoogle Scholar
  9. Bing W, Redwood CS, Purcell IF, Esposito G, Watkins H, Marston SB (1997) Effects of two hypertrophic cardiomyopathy mutations in α-tropomyosin, Asp175Asn and Glu180Gly, on Ca2+ regulation of thin filament motility. Biochem Biophys Res Commun 236:760–764PubMedCrossRefGoogle Scholar
  10. Brunet NM, Mihajlović G, Aledealat K, Wang F, Xiong P, von Molnár S, Chase PB (2012) Micromechanical thermal assays of Ca2+-regulated thin-filament function and modulation by hypertrophic cardiomyopathy mutants of human cardiac troponin. J Biomed Biotechnol 2012:657523PubMedCrossRefGoogle Scholar
  11. Chang AN, Harada K, Ackerman MJ, Potter JD (2005) Functional consequences of hypertrophic and dilated cardiomyopathy-causing mutations in α-tropomyosin. J Biol Chem 280(40):34343–34349PubMedCrossRefGoogle Scholar
  12. Clemmens EW, Regnier M (2004) Skeletal regulatory proteins enhance thin filament sliding speed and force by skeletal HMM. J Muscle Res Cell Motil 25(7):515–525PubMedCrossRefGoogle Scholar
  13. de Lanerolle P, Cole AB (2002) Cytoskeletal proteins and gene regulation: form, function, and signal transduction in the nucleus. Sci STKE (139):pe30Google Scholar
  14. de Lanerolle P, Serebryannyy L (2011) Nuclear actin and myosins: life without filaments. Nat Cell Biol 13(11):1282–1288PubMedCrossRefGoogle Scholar
  15. Dingová H, Fukalová J, Maninová M, Philimonenko VV, Hozák P (2009) Ultrastructural localization of actin and actin-binding proteins in the nucleus. Histochem Cell Biol 131(3):425–434PubMedCrossRefGoogle Scholar
  16. Dittmer TA, Stacey NJ, Sugimoto-Shirasu K, Richards EJ (2007) LITTLE NUCLEI genes affecting nuclear morphology in Arabidopsis thaliana. Plant Cell 19(9):2793–2803PubMedCrossRefGoogle Scholar
  17. Escobar M, Cardenas C, Colavita K, Petrenko NB, Franzini-Armstrong C (2011) Structural evidence for perinuclear calcium microdomains in cardiac myocytes. J Mol Cell Cardiol 50(3):451–459PubMedCrossRefGoogle Scholar
  18. Franklin S, Zhang MJ, Chen H, Paulsson AK, Mitchell-Jordan SA, Li Y, Ping P, Vondriska TM (2011) Specialized compartments of cardiac nuclei exhibit distinct proteomic anatomy. Mol Cell Proteomics 10(1):M110.000703PubMedCrossRefGoogle Scholar
  19. Gafurov B, Fredricksen S, Cai A, Brenner B, Chase PB, Chalovich JM (2004) The Δ14 mutant of troponin T enhances ATPase activity and alters the cooperative binding of S1-ADP to regulated actin. Biochemistry 43(48):15276–15285PubMedCrossRefGoogle Scholar
  20. Gardiner J, Overall R, Marc J (2011) Putative Arabidopsis homologues of metazoan coiled-coil cytoskeletal proteins. Cell Biol Int 35(8):767–774PubMedCrossRefGoogle Scholar
  21. Geiss-Friedlander R, Melchior F (2007) Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol 8(12):947–956PubMedCrossRefGoogle Scholar
  22. Golitsina N, An Y, Greenfield NJ, Thierfelder L, Iizuka K, Seidman JG, Seidman CE, Lehrer SS, Hitchcock-DeGregori SE (1999) Effects of two familial hypertrophic cardiomyopathy-causing mutations on α-tropomyosin structure and function. Biochemistry 38(12):3850PubMedCrossRefGoogle Scholar
  23. Gomes AV, Potter JD (2004) Molecular and cellular aspects of troponin cardiomyopathies. Ann NY Acad Sci 1015:214–224PubMedCrossRefGoogle Scholar
  24. Gordon AM, LaMadrid M, Chen Y, Luo Z, Chase PB (1997) Calcium regulation of skeletal muscle thin filament motility in vitro. Biophys J 72:1295–1307PubMedCrossRefGoogle Scholar
  25. Gordon AM, Chen Y, Liang B, LaMadrid M, Luo Z, Chase PB (1998) Skeletal muscle regulatory proteins enhance F-actin in vitro motility. Adv Exp Med Biol 453:187–197PubMedGoogle Scholar
  26. Gordon AM, Homsher E, Regnier M (2000) Regulation of contraction in striated muscle. Physiol Rev 80:853–924PubMedGoogle Scholar
  27. Grummt I (2006) Actin and myosin as transcription factors. Curr Opin Genet Dev 16(2):191–196PubMedCrossRefGoogle Scholar
  28. Herrmann J, Lerman LO, Lerman A (2007) Ubiquitin and ubiquitin-like proteins in protein regulation. Circ Res 100(9):1276–1291PubMedCrossRefGoogle Scholar
  29. Hofmann WA, Arduini A, Nicol SM, Camacho CJ, Lessard JL, Fuller-Pace FV, de Lanerolle P (2009) SUMOylation of nuclear actin. J Cell Biol 186(2):193–200PubMedCrossRefGoogle Scholar
  30. Homsher E, Kim B, Bobkova A, Tobacman LS (1996) Calcium regulation of thin filament movement in an in vitro motility assay. Biophys J 70:1881–1892PubMedCrossRefGoogle Scholar
  31. Homsher E, Lee DM, Morris C, Pavlov D, Tobacman LS (2000) Regulation of force and unloaded sliding speed in single thin filaments: effects of regulatory proteins and calcium. J Physiol 524(Pt 1):233–243PubMedCrossRefGoogle Scholar
  32. Horton P, Park K-J, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res 35(Web Server issue):W585–W587PubMedCrossRefGoogle Scholar
  33. Johnson ES (2004) Protein modification by SUMO. Annu Rev Biochem 73:355–382PubMedCrossRefGoogle Scholar
  34. Kajstura J, Urbanek K, Perl S, Hosoda T, Zheng H, Ogórek B, Ferreira-Martins J, Goichberg P, Rondon-Clavo C, Sanada F, D’Amario D, Rota M, Del Monte F, Orlic D, Tisdale J, Leri A, Anversa P (2010) Cardiomyogenesis in the adult human heart. Circ Res 107(2):305–315PubMedCrossRefGoogle Scholar
  35. Karibe A, Tobacman LS, Strand J, Butters C, Back N, Bachinski LL, Arai AE, Ortiz A, Roberts R, Homsher E, Fananapazir L (2001) Hypertrophic cardiomyopathy caused by a novel α-tropomyosin mutation (V95A) is associated with mild cardiac phenotype, abnormal calcium binding to troponin, abnormal myosin cycling, and poor prognosis. Circulation 103(1):65–71PubMedCrossRefGoogle Scholar
  36. Kataoka A, Hemmer C, Chase PB (2007) Computational simulation of hypertrophic cardiomyopathy mutations in troponin I: influence of increased myocyte calcium sensitivity on isometric force, ATPase and [Ca2+]i. J Biomech 40(9):2044–2052PubMedCrossRefGoogle Scholar
  37. Köhler J, Chen Y, Brenner B, Gordon AM, Kraft T, Martyn DA, Regnier M, Rivera AJ, Wang C-K, Chase PB (2003) Familial hypertrophic cardiomyopathy mutations in troponin I (K183Δ, G203S, K206Q) enhance filament sliding. Physiol Genomics 14(2):117–128PubMedGoogle Scholar
  38. Korte FS, Dai J, Buckley K, Feest ER, Adamek N, Geeves MA, Murry CE, Regnier M (2011) Upregulation of cardiomyocyte ribonucleotide reductase increases intracellular 2 deoxy-ATP, contractility, and relaxation. J Mol Cell Cardiol 51(6):894–901PubMedCrossRefGoogle Scholar
  39. Kremneva E, Boussouf S, Nikolaeva O, Maytum R, Geeves MA, Levitsky DI (2004) Effects of two familial hypertrophic cardiomyopathy mutations in α-tropomyosin, Asp175Asn and Glu180Gly, on the thermal unfolding of actin-bound tropomyosin. Biophys J 87(6):3922–3933PubMedCrossRefGoogle Scholar
  40. Laflamme MA, Murry CE (2011) Heart regeneration. Nature 473(7347):326–335PubMedCrossRefGoogle Scholar
  41. Landstrom AP, Parvatiyar MS, Pinto JR, Marquardt ML, Bos JM, Tester DJ, Ommen SR, Potter JD, Ackerman MJ (2008) Molecular and functional characterization of novel hypertrophic cardiomyopathy susceptibility mutations in TNNC1-encoded troponin C. J Mol Cell Cardiol 45(2):281–288PubMedCrossRefGoogle Scholar
  42. Li XE, Suphamungmee W, Janco M, Geeves MA, Marston SB, Fischer S, Lehman W (2012) The flexibility of two tropomyosin mutants, D175N and E180G, that cause hypertrophic cardiomyopathy. Biochem Biophys Res Commun 424:493–496PubMedCrossRefGoogle Scholar
  43. Loong CKP, Zhou H-X, Chase PB (2012a) Familial hypertrophic cardiomyopathy related E180G mutation increases flexibility of human cardiac α-tropomyosin. FEBS Lett 586(19):3503–3507PubMedCrossRefGoogle Scholar
  44. Loong CKP, Zhou H-X, Chase PB (2012b) Persistence length of human cardiac α-tropomyosin measured by single molecule direct probe microscopy. PLoS One 7(6):e39676PubMedCrossRefGoogle Scholar
  45. Ly S, Lehrer SS (2012) Long-range effects of familial hypertrophic cardiomyopathy mutations E180G and D175N on the properties of tropomyosin. Biochemistry 51(32):6413–6420PubMedCrossRefGoogle Scholar
  46. Mandavia CH, Pulakat L, DeMarco V, Sowers JR (2012) Over-nutrition and metabolic cardiomyopathy. Metabolism 61(9):1205–1210PubMedCrossRefGoogle Scholar
  47. Manza LL, Codreanu SG, Stamer SL, Smith DL, Wells KS, Roberts RL, Liebler DC (2004) Global shifts in protein sumoylation in response to electrophile and oxidative stress. Chem Res Toxicol 17(12):1706–1715PubMedCrossRefGoogle Scholar
  48. Marston SB (2011) How do mutations in contractile proteins cause the primary familial cardiomyopathies? J Cardiovasc Transl Res 4(3):245–255PubMedCrossRefGoogle Scholar
  49. Masuda K, Xu Z-J, Takahashi S, Ito A, Ono M, Nomura K, Inoue M (1997) Peripheral framework of carrot cell nucleus contains a novel protein predicted to exhibit a long α-helical domain. Exp Cell Res 232(1):173–181PubMedCrossRefGoogle Scholar
  50. Mathur MC, Chase PB, Chalovich JM (2011) Several cardiomyopathy causing mutations on tropomyosin either destabilize the active state of actomyosin or alter the binding properties of tropomyosin. Biochem Biophys Res Commun 406(1):74–78PubMedCrossRefGoogle Scholar
  51. McDonald D, Carrero G, Andrin C, de Vries G, Hendzel MJ (2006) Nucleoplasmic β-actin exists in a dynamic equilibrium between low-mobility polymeric species and rapidly diffusing populations. J Cell Biol 172(4):541–552PubMedCrossRefGoogle Scholar
  52. Michele DE, Albayya FP, Metzger JM (1999) Direct, convergent hypersensitivity of calcium-activated force generation produced by hypertrophic cardiomyopathy mutant α-tropomyosins in adult cardiac myocytes. Nat Med 5(12):1413–1417PubMedCrossRefGoogle Scholar
  53. Minamikawa T, Takahashi A, Fujita S (1995) Differences in features of calcium transients between the nucleus and the cytosol in cultured heart muscle cells: analyzed by confocal microscopy. Cell Calcium 17(3):167–176PubMedCrossRefGoogle Scholar
  54. Miralles F, Visa N (2006) Actin in transcription and transcription regulation. Curr Opin Cell Biol 18(3):261–266PubMedCrossRefGoogle Scholar
  55. Misteli T, Spector DL (eds) (2011) The nucleus. Cold Spring Harbor Laboratory Press, WoodburyGoogle Scholar
  56. Nowakowski SG, Kolwicz SC, Korte FS, Luo Z, Robinson-Hamm JN, Page JL, Brozovich F, Weiss RS, Tian R, Murry CE, Regnier M (2013) Transgenic overexpression of ribonucleotide reductase improves cardiac performance. Proc Natl Acad Sci USA 110(15):6187–6192PubMedCrossRefGoogle Scholar
  57. Papadopoulos JS, Agarwala R (2007) COBALT: constraint-based alignment tool for multiple protein sequences. Bioinformatics 23(9):1073–1079PubMedCrossRefGoogle Scholar
  58. Park S, Yang J-S, Shin Y-E, Park J, Jang SK, Kim S (2011) Protein localization as a principal feature of the etiology and comorbidity of genetic diseases. Mol Syst Biol 7:494PubMedCrossRefGoogle Scholar
  59. Parmacek MS, Solaro RJ (2004) Biology of the troponin complex in cardiac myocytes. Prog Cardiovasc Dis 47(3):159–176PubMedCrossRefGoogle Scholar
  60. Pestic-Dragovich L, Stojiljkovic L, Philimonenko AA, Nowak G, Ke Y, Settlage RE, Shabanowitz J, Hunt DF, Hozak P, de Lanerolle P (2000) A myosin I isoform in the nucleus. Science 290(5490):337–341PubMedCrossRefGoogle Scholar
  61. Phillips SK, Wiseman RW, Woledge RC, Kushmerick MJ (1993) Neither changes in phosphorus metabolite levels nor myosin isoforms can explain the weakness in aged mouse muscle. J Physiol 463:157–167PubMedGoogle Scholar
  62. Prabhakar R, Boivin GP, Grupp IL, Hoit B, Arteaga G, Solaro JR, Wieczorek DF (2001) A familial hypertrophic cardiomyopathy α-tropomyosin mutation causes severe cardiac hypertrophy and death in mice. J Mol Cell Cardiol 33(10):1815–1828PubMedCrossRefGoogle Scholar
  63. Prabhakar R, Petrashevskaya N, Schwartz A, Aronow B, Boivin GP, Molkentin JD, Wieczorek DF (2003) A mouse model of familial hypertrophic cardiomyopathy caused by a α-tropomyosin mutation. Mol Cell Biochem 251(1–2):33–42PubMedCrossRefGoogle Scholar
  64. Racca AW, Beck AE, Rao VS, Flint GV, Lundy SD, Born DE, Bamshad MJ, Regnier M (2013) Contractility and kinetics of human fetal and human adult skeletal muscle. J Physiol 591(Pt 12):3049–3061PubMedGoogle Scholar
  65. Reddy KK, Oitomen FM, Patel GP, Bag J (2005) Perinuclear localization of slow troponin C m RNA in muscle cells is controlled by a cis-element located at its 3′ untranslated region. RNA 11(3):294–307PubMedCrossRefGoogle Scholar
  66. Regnier M, Homsher E (1998) The effect of ATP analogs on post hydrolytic and force development steps in skinned skeletal muscle fibers. Biophys J 74:3059–3071PubMedCrossRefGoogle Scholar
  67. Regnier M, Martyn DA, Chase PB (1996) Calmidazolium alters Ca2+ regulation of tension redevelopment rate in skinned skeletal muscle. Biophys J 71:2786–2794PubMedCrossRefGoogle Scholar
  68. Regnier M, Lee DM, Homsher E (1998a) ATP analogs and muscle contraction: mechanics and kinetics of nucleoside triphosphate binding and hydrolysis. Biophys J 74:3044–3058PubMedCrossRefGoogle Scholar
  69. Regnier M, Martyn DA, Chase PB (1998b) Calcium regulation of tension redevelopment kinetics with 2-deoxy-ATP or low [ATP] in rabbit skeletal muscle. Biophys J 74:2005–2015PubMedCrossRefGoogle Scholar
  70. Regnier M, Rivera AJ, Chen Y, Chase PB (2000) 2-deoxy-ATP enhances contractility of rat cardiac muscle. Circ Res 86(12):1211–1217PubMedCrossRefGoogle Scholar
  71. Ren J, Gao X, Jin C, Zhu M, Wang X, Shaw A, Wen L, Yao X, Xue Y (2009) Systematic study of protein sumoylation: development of a site-specific predictor of SUMOsp 2.0. Proteomics 9(12):3409–3412PubMedCrossRefGoogle Scholar
  72. Resende RR, Andrade LM, Oliveira AG, Guimarães ES, Guatimosim S, Leite MF (2013) Nucleoplasmic calcium signaling and cell proliferation: calcium signaling in the nucleus. Cell Commun Signal 11(1):14Google Scholar
  73. Sahota VK, Grau BF, Mansilla A, Ferrús A (2009) Troponin I and Tropomyosin regulate chromosomal stability and cell polarity. J Cell Sci 122(Pt 15):2623–2631PubMedCrossRefGoogle Scholar
  74. Schoffstall B, Chase PB (2008) Increased intracellular [dATP] enhances cardiac contraction in embryonic chick cardiomyocytes. J Cell Biochem 104(6):2217–2227PubMedCrossRefGoogle Scholar
  75. Schoffstall B, Brunet NM, Wang F, Williams S, Barnes AT, Miller VF, Compton LA, McFadden LA, Taylor DW, Dhanarajan R, Seavy M, Chase PB (2006a) Ca2+-sensitivity of regulated cardiac thin filament sliding does not depend on myosin isoform. J Physiol 577(Pt 3):935–944PubMedCrossRefGoogle Scholar
  76. Schoffstall B, Clark A, Chase PB (2006b) Positive inotropic effects of low dATP/ATP ratios on mechanics and kinetics of porcine cardiac muscle. Biophys J 91(6):2216–2226PubMedCrossRefGoogle Scholar
  77. Schoffstall B, LaBarbera VA, Brunet NM, Gavino BJ, Herring L, Heshmati S, Kraft BH, Inchausti V, Meyer NL, Moonoo D, Takeda AK, Chase PB (2011) Interaction between troponin and myosin enhances contractile activity of myosin in cardiac muscle. DNA Cell Biol 30(9):653–659PubMedCrossRefGoogle Scholar
  78. Schulz EM, Wieczorek DF (2013) Tropomyosin de-phosphorylation in the heart: what are the consequences? J Muscle Res Cell Motil. doi: 10.1007/s10974-013-9348-7
  79. Shen TH, Lin H-K, Scaglioni PP, Yung TM, Pandolfi PP (2006) The mechanisms of PML-nuclear body formation. Mol Cell 24(3):331–339PubMedCrossRefGoogle Scholar
  80. Solaro RJ, Kobayashi T (2011) Protein phosphorylation and signal transduction in cardiac thin filaments. J Biol Chem 286(12):9935–9940PubMedCrossRefGoogle Scholar
  81. Spencer VA, Costes S, Inman JL, Xu R, Chen J, Hendzel MJ, Bissell MJ (2011) Depletion of nuclear actin is a key mediator of quiescence in epithelial cells. J Cell Sci 124(Pt 1):123–132PubMedCrossRefGoogle Scholar
  82. Strickfaden H, Cremer T, Rippe K (2012) Higher order chromatin organization and dynamics. In: Rippe K (ed) Genome organization and function in the cell nucleus. Wiley-VCH, Weinheim, pp 417–447Google Scholar
  83. Tardiff JC (2011) Thin filament mutations: developing an integrative approach to a complex disorder. Circ Res 108(6):765–782PubMedCrossRefGoogle Scholar
  84. Tobacman LS (1996) Thin filament-mediated regulation of cardiac contraction. Annu Rev Physiol 58:447–481PubMedCrossRefGoogle Scholar
  85. Van Driest SL, Ellsworth EG, Ommen SR, Tajik AJ, Gersh BJ, Ackerman MJ (2003) Prevalence and spectrum of thin filament mutations in an outpatient referral population with hypertrophic cardiomyopathy. Circulation 108(4):445–451PubMedCrossRefGoogle Scholar
  86. Visa N, Percipalle P (2010) Nuclear functions of actin. Cold Spring Harb Perspect Biol 2(4):a000620PubMedCrossRefGoogle Scholar
  87. Wang J, Schwartz RJ (2010) Sumoylation and regulation of cardiac gene expression. Circ Res 107(1):19–29PubMedCrossRefGoogle Scholar
  88. Wang F, Brunet NM, Grubich JR, Bienkiewicz E, Asbury TM, Compton LA, Mihajlović G, Miller VF, Chase PB (2011) Facilitated cross-bridge interactions with thin filaments by familial hypertrophic cardiomyopathy mutations in α-tropomyosin. J Biomed Biotechnol 2011:435271PubMedGoogle Scholar
  89. Watkins H, Ashrafian H, Redwood C (2011) Inherited cardiomyopathies. N Engl J Med 364(17):1643–1656PubMedCrossRefGoogle Scholar
  90. Willott RH, Gomes AV, Chang AN, Parvatiyar MS, Pinto JR, Potter JD (2010) Mutations in Troponin that cause HCM, DCM AND RCM: what can we learn about thin filament function? J Mol Cell Cardiol 48(5):882–892PubMedCrossRefGoogle Scholar
  91. Wu X, Bers DM (2006) Sarcoplasmic reticulum and nuclear envelope are one highly interconnected Ca2+ store throughout cardiac myocyte. Circ Res 99(3):283–291PubMedCrossRefGoogle Scholar
  92. Wu X, Zhang T, Bossuyt J, Li X, McKinsey TA, Dedman JR, Olson EN, Chen J, Brown JH, Bers DM (2006) Local InsP3-dependent perinuclear Ca2+ signaling in cardiac myocyte excitation-transcription coupling. J Clin Invest 116(3):675–682PubMedCrossRefGoogle Scholar
  93. Yu C-S, Chen Y-C, Lu C-H, Hwang J-K (2006) Prediction of protein subcellular localization. Proteins 64(3):643–651PubMedCrossRefGoogle Scholar
  94. Zhang T, Birbrair A, Delbono O (2013a) Nonmyofilament-associated troponin T3 nuclear and nucleolar localization sequence and leucine zipper domain mediate muscle cell apoptosis. Cytoskeleton 70(3):134–147PubMedCrossRefGoogle Scholar
  95. Zhang T, Birbrair A, Wang ZM, Taylor J, Messi ML, Delbono O (2013b) Troponin T nuclear localization and its role in aging skeletal muscle. Age (Dordr) 35(2):353–370CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • P. Bryant Chase
    • 2
  • Mark P. Szczypinski
    • 1
  • Elliott P. Soto
    • 1
  1. 1.Department of Biological ScienceFlorida State UniversityTallahasseeUSA
  2. 2.Department of Biological ScienceFlorida State UniversityTallahasseeUSA

Personalised recommendations