Skip to main content
Log in

Notes on using temperature-dependent thermal diffusivity—forgotten rules

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

New materials and structures are applied in order to maintain the engineering products more and more efficient. Different types of thermal analysis/modelling of such materials and structures are also needed for the proper planning or design. The thermal analysis/modelling processes are supported by many commercial codes but in some cases, the experts might have applied a self-developed method also. The success of the analysis/modelling depends on many factors, but the basis is the correct application of the heat conduction theory which is more important in case of transient thermal processes. As the used tools are more and more powerful, the users pay less attention to the theory background, according to the author experience. It seems that the long tradition of the inconsistent application of the temperature-dependent thermal diffusivity is continuing, even strengthened by the increased availability of data of the temperature-dependent thermal properties. Regarding the origination of the thermal diffusivity, this might lead to the misinterpretation or misunderstanding of the nonlinear heat conduction problem solution procedures. This paper calls attention to avoid this, shows what kind of mistakes might occur related to this widely observable practice, summarizes the proper application and interprets where and how one could find room for the temperature-dependent thermal diffusivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Origination of hyperbolic-type equation straightforwardly can be derived from Eq. (5) as well, see [32].

  2. The use of apparent diffusivity might be advised.

Abbreviations

a 1 :

Constant in diffusivity function (m2 s−1)

a 2 :

Constant in diffusivity function (s K−1 m−2)

b :

Constant in conductivity function (K−1)

c p :

Specific heat, pressure constant (J kg−1 K−1)

c v :

Specific heat, volume constant (J kg−1 K−1)

\(\overline{\overline{f}}\) :

Stress tensor (N m−2)

\(\bar{g}\) :

Force field (m s−2)

k :

Thermal conductivity (W m−1 K−1)

k 0 :

Base value in conductivity function (W m−1 K−1)

k m :

Mean value of conductivity (W m−1 K−1)

p :

Pressure (N m−2)

\(\dot{\bar{q}}_{\text{F}}\) :

Conductive heat flux (W m−2)

\(\dot{q}_{\text{V}}\) :

Volume heat generation (W m−3)

t :

Time (s)

u :

Internal energy specific (J kg−1)

v :

Specific volume (m3 kg−1)

w :

Velocity (m s−1)

x :

Space coordinate (m)

A :

Constant in diffusivity function

B :

Constant in conductivity function

C :

Constant in conductivity function

D :

Constant in conductivity function

K :

Constant in volume heat capacity function

T :

Temperature (K)

T H :

Lower limit of temperature (K)

T L :

Upper limit of temperature (K)

V :

Goodman temperature (K)

α :

Thermal diffusivity (m2 s−1)

β :

Vol. thermal expansion (K−1)

ρ :

Density (kg m−3)

ρ c :

Volume heat capacity (J m−3 K−1)

σ :

Stress (normal) (N m−2)

τ :

Stress (shear) (N m−2)

F :

Dissipation (W m−3)

θ :

Kirchhoff temperature (K)

θ 0 :

Lower limit of Kirchhoff temperature (K)

ϕ :

General function of temperature

ϑ :

Auxiliary variable

H :

Higher

L :

Lower

0 :

Optional or starting

P :

Constant pressure

v :

Constant volume

j :

Superscript in conductivity function

m :

Superscript in diffusivity function

n :

Superscript in conductivity function

r :

Superscript in volume heat capacity function

References

  1. Kirchoff G, Planck M. Vorlesungen über die Theorie Warme. Leipzig: Teubner; 1894.

    Google Scholar 

  2. Phillips RL. Theory of the non-stationary arc column. Br J Appl Phys. 1967;18:65–78.

    Article  CAS  Google Scholar 

  3. Goodman TR. Application of integral methods to transient nonlinear heat transfer. In: Irvine TF, Hartnett JP, editors. Advances in heat transfer, vol. 1. Amsterdam: Elsevier; 1964. p. 52–110.

    Google Scholar 

  4. Bellman R, Kashef BG, Casti J. Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations. J Comput Phys. 1972;10:40–52.

    Article  Google Scholar 

  5. Guan-ren Zhang. Solution of nonlinear heat conduction equation and image method. Appl Math Mech Engl. 1984;5:1521–8.

    Article  Google Scholar 

  6. Polyanin AD, Zhurov AI. Exact solutions of linear and non-linear differential-difference heat and diffusion equations with finite relaxation time. Int J Non Linear Mech. 2013;54:115–26.

    Article  Google Scholar 

  7. Katayama K, Hattori M, Okada M, Kotake S. Numerical method of transient conduction with temperature dependent thermal properties. Bull JSME. 1972;15(89):1394–401.

    Article  Google Scholar 

  8. Bonacina C, Comini G. On the solution of the nonlinear heat conduction equations by numerical methods. Int J Heat Mass Transf. 1972;16:581–9.

    Article  Google Scholar 

  9. Goodrich LE. A one-dimensional numerical model for geothermal problems. Technical Paper 421, NRC of Canada, Ottawa, 1974.

  10. Mingle JO. The method of differential quadrature for transient nonlinear diffusion. J Math Anal Appl. 1977;60:559–69.

    Article  Google Scholar 

  11. Lee RE. Heat transfer to the throat of a solid propellant rocket nozzle. Aerodynamics Research Report No. 178, 1963.

  12. Moreney JP. A one dimensional numerical model of laser heating of target slabs. DREV Report 4166/80, File 3633B-006, 1980, Valcartier, Quebec, Canada.

  13. Wrobel LC, Brebbia CA. The dual reciprocity boundary element formulation for nonlinear diffusion problems. Comput Method Appl M. 1987;65:147–64.

    Article  Google Scholar 

  14. Mihaljan JA. A rigorous exposition of the Boussinesq approximations applicable to a thin layer of fluid. Astrophys J. 1962;136:1126.

    Article  Google Scholar 

  15. Cordon RP, Velarde MG. On the (non linear) foundations of Boussinesq approximation applicable to a thin layer of fluid. J Phys Paris. 1975;36:591–601.

    Article  Google Scholar 

  16. Diaz JI, Galiano G. On the Boussinesq system with non linear thermal diffusion. Nonlinear Anal Theory. 1997;30(6):3255–63.

    Article  Google Scholar 

  17. Bonacina C, Comini G, Fasano A, Primicerio M. Numerical solution of phase-change problems. Int J Heat Mass Transf. 1973;16:1825–32.

    Article  Google Scholar 

  18. Pham QT. A fast, unconditionally stable finite-difference scheme for heat conduction with phase change. Int J Heat Mass Transf. 1985;28:2079–84.

    Article  Google Scholar 

  19. Bonacina Comini, Fasano Primicerio. On estimation of Thermophysical properties in nonlinear heat-conduction problems. Int J Heat Mass Transf. 1974;17:861–7.

    Article  Google Scholar 

  20. Mitropolsky YA, Berezovsky AA, Zhernovyi YV. Mathematical modelling of heat transfer during electron-beam autocrucible melting by means of the steady-state Stefan problem. J Eng Math. 2000;38:173–90.

    Article  Google Scholar 

  21. Kiss LI. Thermal properties measurement. C.Sc Thesis, Hungarian Academy of Sciences, 1983 (Hungarian).

  22. Lesnic D, Elliott L, Ingham DB. A note on the determination of the thermal properties of a material in a transient nonlinear heat conduction problem. Int Commun Heat Mass. 1995;22(4):475–82.

    Article  Google Scholar 

  23. Yeung WK, Lam TT. Second-order finite difference approximation for inverse determination of thermal conductivity. Int J Heat Mass Transf. 1995;39:3685–93.

    Article  Google Scholar 

  24. Yang CY. Estimation of the temperature-dependent thermal conductivity in inverse heat conduction problems. Appl Math Model. 1999;23:469–78.

    Article  Google Scholar 

  25. Kim S. A Simple direct estimation of temperature-dependent thermal conductivity with kirchhoff transformation. Int Commun Heat Mass. 2001;28(4):537–44.

    Article  CAS  Google Scholar 

  26. Carslaw HS, Jaeger JC. Conduction of heat in solids. London: Oxford University Press; 1959.

    Google Scholar 

  27. Özisik MN. Heat conduction. New York: Wiley; 1980.

    Google Scholar 

  28. Maglic KD, Cezairliyan A, Peletsky VE. Compendium of thermophysical property measurement methods, vol. 1. New York: Plenum Press; 1984.

    Book  Google Scholar 

  29. Őzisik MN, Orlande HRB. Inverse heat transfer: fundamentals and applications. New York: Taylor & Francis; 2000.

    Google Scholar 

  30. Beck JV, Blackwell B, St Clair CR. Inverse heat conduction. New York: Wiley; 1985.

    Google Scholar 

  31. Parker WJ, Jenkins RJ, Butler CP, Abbott GL. Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J Appl Phys. 1961;32:1679.

    Article  CAS  Google Scholar 

  32. Gróf G, Kiss LI. The modell of heat conduction in solids. In: Proceedings of the fourth conference on mechanical engineering, Budapest; 2004. pp. 353–357.

  33. ASTM E1461: Standard Test Method for Thermal Diffusivity by the Flash Method.

  34. Tye RP, Hume D. Reference materials for thermal transport properties measurements. J Therm Anal Calorim. 2018;131(1):289–99.

    Article  CAS  Google Scholar 

  35. Meresse D, Harmand S, Grine A. Thermal diffusivity identification by 2nd derivative analysis of transient temperature profile. J Therm Anal Calorim. 2016;124:1193–208.

    Article  CAS  Google Scholar 

  36. Czél B, Gróf G. Simultaneous identification of temperature-dependent thermal properties via enhanced genetic algorithm. Int J Thermophys. 2012;33:1023–41.

    Article  Google Scholar 

  37. Huang CH, Yan JY. An inverse problem in simultaneously measuring temperature-dependent thermal conductivity and heat capacity. Int J Heat Mass Transf. 1995;38(18):3433–41.

    Article  Google Scholar 

  38. Cui M, Zhu Q, Gao X. A Modified conjugate gradient method for transient nonlinear inverse heat conduction problems: a case study for identifying temperature-dependent thermal conductivities. J Heat Transf T ASME. 2014;136:091301/1–7.

    Google Scholar 

  39. Grieu S, Faugeroux O, Traoré A, Claudet B, Bodnar JL. Artificial intelligence tools and inverse methods for estimating the thermal diffusivity of buildings materials. Energy Build. 2011;43(2–3):543–54.

    Article  Google Scholar 

  40. Lesnic D, Elliott L, Ingham DB. Identification of the thermal conductivity and heat capacity in unsteady nonlinear heat conduction problems using the boundary element method. J Comput Phys. 1996;126:410–20.

    Article  CAS  Google Scholar 

  41. He H, He C, Chen G. Inverse determination of temperature-dependent thermophysical parameters using multi objective optimization methods. Int J Heat Mass Transf. 2015;85:694–702.

    Article  Google Scholar 

  42. Hemberger F, Göbel A, Ebert HP. Determination of the thermal diffusivity of electrically non-conductive solids in the temperature range from 80 K to 300 K by laser-flash measurement. Int J Thermophys. 2010;31:2187–200.

    Article  CAS  Google Scholar 

  43. Liu DM. Effect of temperature on measuring the thermal diffusivity of ceramic of different specimen thicknesses by using a laserpulse method. Mater Sci Eng B. 1997;47:191–6.

    Article  CAS  Google Scholar 

  44. Kuepferle J, Wilzer J, Weber S, Theisen W. Temperature-dependent thermal conductivities of non-alloyed and high-alloyed heat-treatable steels in the temperature range between 20 and 500 °C. J Mater Sci. 2014;49:4833–43.

    Article  Google Scholar 

  45. Kaschnitz E, Ebner R. Thermal diffusivity of the aluminum alloy Al–17Si–4Cu (A390) in the solid and liquid states. Int J Thermophys. 2007;28:711–22.

    Article  CAS  Google Scholar 

  46. Kuepferle J, Wilzer J, Weber S, Theisen W. Thermo-physical properties of heat-treatable steels in the temperature range relevant for hot-stamping applications. J Mater Sci. 2015;50:2594–604.

    Article  CAS  Google Scholar 

  47. Pędrak P, Drajewicz M, Dychtoń K, Nowotnik A. Microstructure and thermal characteristics of SiC–Al2O3–Ni composite for high-temperature application. J Therm Anal Calorim. 2016;125(3):1353–6.

    Article  Google Scholar 

  48. Wilthan B, Schützenhöfer W, Pottlacher G. Thermal diffusivity and thermal conductivity of five different steel alloys in the solid and liquid phases. Int J Thermophys. 2015;36:2259–72.

    Article  CAS  Google Scholar 

  49. Miao S, Zhou Y. Temperature dependence of thermal diffusivity and conductivity for sandstone and carbonate rocks. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-017-6631-7.

    Google Scholar 

  50. Hofmeister AM. Thermal diffusivity of garnets at high temperature. Phys Chem Miner. 2006;33:45–62.

    Article  CAS  Google Scholar 

  51. Zhang Y, Sun Q, Geng J. Olivine thermal diffusivity influencing factors. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-017-6945-5.

    Google Scholar 

  52. Sun Y, Zang Z. Global regularity for the initial–boundary value problem of the 2-D Boussinesq system with variable viscosity and thermal diffusivity. J Differ Equ. 2013;255:1069–85.

    Article  Google Scholar 

  53. Nabelek PI, Hofmeister AM, Whittington AG. The influence of temperature-dependent thermal diffusivity on the conductive cooling rates of plutons and temperature-time paths in contact aureoles. Earth Planet Sci Lett. 2012;317–318:157–64.

    Article  Google Scholar 

  54. Hofmeister AM. Inference of high thermal transport in the lower mantle from laser-flash experiments and the damped harmonic oscillator model. Phys Earth Planet Inter. 2008;170:201–6.

    Article  Google Scholar 

  55. Betty W, Snowden CM. Electro-thermal device and circuit simulation with thermal nonlinearity due to temperature dependent diffusivity. Electron Lett. 2000;36:1966–8.

    Article  Google Scholar 

  56. Krabbenhoft K, Damkilde L. Comment electro-thermal device and circuit simulation with thermal nonlinearity due to temperature dependent diffusivity. Electron Lett. 2001;37(24):1481–2.

    Article  Google Scholar 

  57. Betty W, Snowden CM. Electro-thermal device and circuit simulation with thermal nonlinearity due to temperature dependent diffusivity. Electron Lett. 2001;37(24):1482–3

    Article  Google Scholar 

  58. Brandlund JM, Kameyama MC, Yuen DA, Kaneda Y. Effects of temperature-dependent thermal diffusivity on shear instability in a viscoelastic zone: implications for faster ductile faulting and earthquakes in the spinel stability field. Earth Planet Sci Lett. 2000;182:171–85.

    Article  Google Scholar 

  59. Whittington AG, Hofmeister AM, Nabelek PI. Temperature-dependent thermal diffusivity of the Earth’s crust and implications for magmatism. Nature. 2009;458(7236):319–21.

    Article  CAS  Google Scholar 

  60. Mariani VC, Barbosa AG, Coelho LS. Apparent thermal diffusivity estimation of the banana during drying using inverse method. J Food Eng. 2008;85:569–79.

    Article  Google Scholar 

  61. ABAQUS Theory Manual, Chapter 2-11:2-212.

  62. ANSYS Mechanical APDL Theory Reference, Chapter 6:205.

  63. Abdel-Aal HA. A remark of the flash temperature theory. Int Commun Heat Mass. 1997;24(2):241–50.

    Article  CAS  Google Scholar 

  64. Abdel-Aal HA, Smith ST. On friction-induced temperatures of rubbing metallic pairs with temperature-dependent thermal properties. Wear. 1998;216:41–59.

    Article  CAS  Google Scholar 

  65. Hofmeister AM. Thermal diffusivity and thermal conductivity of single-crystal MgO and Al2O3 and related compounds as a function of temperature. Phys Chem Miner. 2014;41:p361–71.

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the grant OTKA K116375.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyula Gróf.

Additional information

The present article is based on the lecture presented at JETC2017 conference in Budapest - Hungary on 21-25 May, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gróf, G. Notes on using temperature-dependent thermal diffusivity—forgotten rules. J Therm Anal Calorim 132, 1389–1397 (2018). https://doi.org/10.1007/s10973-018-7014-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7014-4

Keywords

Navigation