Advertisement

Journal of Science Teacher Education

, Volume 27, Issue 5, pp 495–532 | Cite as

Interaction Between Science Teaching Orientation and Pedagogical Content Knowledge Components

  • Betül Demirdöğen
Article

Abstract

The purpose of this case study is to delve into the complexities of how preservice science teachers’ science teaching orientations, viewed as an interrelated set of beliefs, interact with the other components of pedagogical content knowledge (PCK). Eight preservice science teachers participated in the study. Qualitative data were collected in the form of content representation, responses to an open-ended instrument, and semi-structured interviews. Preservice teachers’ orientation and PCK were analyzed deductively. Constant comparison analysis of how their orientation interacted with other PCK components revealed three major themes: (1) one’s purpose for science teaching determines the PCK component(s) with which it interacts, (2) a teacher’s beliefs about the nature of science do not directly interact with his/her PCK, unless those beliefs relate directly to the purposes of teaching science, and (3) beliefs about science teaching and learning mostly interact with knowledge of instructional strategies. Implications for science teacher education and research are discussed.

Keywords

Science teaching orientation Pedagogical content knowledge Case study Preservice science teachers Deductive Constant comparison analysis 

References

  1. Abell, S. K. (2007). Research on science teacher knowledge. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 1105–1151). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  2. Abell, S. K. (2008). Twenty years later: Does pedagogical content knowledge remain a useful idea? International Journal of Science Education, 30, 1405–1416. doi: 10.1080/09500690802187041 CrossRefGoogle Scholar
  3. Alonzo, A. C., & Kim, J. (2015). Declarative and dynamic pedagogical content knowledge as elicited through two video-based interview methods. Journal of Research in Science Teaching. doi: 10.1002/tea.21271 Google Scholar
  4. Avraamidou, L. (2013). Prospective elementary teachers’ science teaching orientations and experiences that impacted their development. International Journal of Science Education, 35, 1698–1724. doi: 10.1080/09500693.2012.708945 CrossRefGoogle Scholar
  5. Aydin, S., & Boz, Y. (2013). The nature of integration among PCK components: A case study of two experienced chemistry teachers. Chemistry Education Research and Practice, 14, 615–624. doi: 10.1039/C3RP00095H CrossRefGoogle Scholar
  6. Aydin, S., Demirdöğen, B., Akin, F. N., Uzuntiryaki-Kondakci, E., & Tarkin, A. (2015). The nature and development of interaction among components of pedagogical content knowledge in practicum. Teaching and Teacher Education, 46, 37–50. doi: 10.1016/j.tate.2014.10.008 CrossRefGoogle Scholar
  7. Aydın, S., Demirdöğen, B., Tarkın, A., Kutucu, S., Ekiz, B., Akın, F. N., … Uzuntiryaki, E. (2013). Providing a set of research-based practices to support preservice teachers’ long-term professional development as learners of science teaching. Science Education, 97, 903–935. doi: 10.1002/sce.21080 CrossRefGoogle Scholar
  8. Bertram, A., & Loughran, J. (2012). Science teachers’ views on CoRes and PaP-eRs as a framework for articulating and developing pedagogical content knowledge. Research in Science Education, 42, 1027–1047. doi: 10.1007/s11165-011-9227-4 CrossRefGoogle Scholar
  9. Boesdorfer, S. (2015). Using teachers’ choice of representations to understand the translation of their orientation towards science teaching to their practice. Electronic Journal of Science Education, 19(1). Retrieved from http://ejse.southwestern.edu/article/view/13871/9357
  10. Boesdorfer, S., & Lorsbach, A. (2014). PCK in action: Examining one chemistry teacher’s practice through the lens of her orientation toward science teaching. International Journal of Science Education, 36, 2111–2132. doi: 10.1080/09500693.2014.909959 CrossRefGoogle Scholar
  11. Boz, Y., & Uzuntiryaki, E. (2006). Turkish prospective chemistry teachers’ beliefs about chemistry teaching. International Journal of Science Education, 28, 1647–1667. doi: 10.1080/09500690500439132 CrossRefGoogle Scholar
  12. Brown, P., Friedrichsen, P., & Abell, S. (2013). The development of prospective secondary biology teachers PCK. Journal of Science Teacher Education, 24, 133–155. doi: 10.1007/s10972-012-9312-1 CrossRefGoogle Scholar
  13. Bryan, L. A., & Abell, S. K. (1999). Development of professional knowledge in learning to teach elementary science. Journal of Research in Science Teaching, 36, 121–139. doi: 10.1002/(SICI)1098-2736(199902)36:2<121:AID-TEA2>3.0.CO;2-U CrossRefGoogle Scholar
  14. Campbell, T., Longhurst, M., Duffy, A. M., Wolf, P. G., & Shelton, B. E. (2013). Science teaching orientations and technology-enhanced tools for student learning in science. Research in Science Education, 43, 2035–2057. doi: 10.1007/s11165-012-9342-x CrossRefGoogle Scholar
  15. Campbell, T., Zuwallack, R., Longhurst, M., Shelton, B. E., & Wolf, P. G. (2014). An examination of the changes in science teaching orientations and technology-enhanced tools for student learning in the context of professional development. International Journal of Science Education, 36, 1815–1848. doi: 10.1080/09500693.2013.879622 CrossRefGoogle Scholar
  16. Chen, B., & Wei, B. (2015). Examining chemistry teachers’ use of curriculum materials: In view of teachers’ pedagogical content knowledge. Chemistry Education Research and Practice, 16, 260–272. doi: 10.1039/C4RP00237G CrossRefGoogle Scholar
  17. Cochran, K. F., King, R. A., & De Ruiter, J. A. (1991). Pedagogical content knowledge: A tentative model for teacher preparation. Paper presented at the annual meeting of the American Educational Research Association, Chicago, IL.Google Scholar
  18. Cooper, R., Loughran, J., & Berry, A. (2015). Understanding sophisticated practice. In A. Berry, P. Friedrichsen, & J. Loughran (Eds.), Re-examining pedagogical content knowledge in science education (pp. 60–74). New York, NY: Routledge.Google Scholar
  19. Creswell, J. W. (2007). Qualitative inquiry and research design: Choosing among five approaches (2nd ed.). Thousand Oaks, CA: Sage.Google Scholar
  20. Creswell, J. W., & Miller, D. L. (2000). Determining validity in qualitative inquiry. Theory into Practice, 39, 124–130. doi: 10.1207/s15430421tip3903_2 CrossRefGoogle Scholar
  21. Davis, E. A., Kenyon, L., Hug, B., Nelson, M., Beyer, C., Schwarz, C., & Reiser, B. J. (2008). MoDeLS: Designing supports for teachers using scientific modeling. Paper presented at the Association for Science Teacher Education, St. Louis, MO.Google Scholar
  22. Demirdöğen, B., Aydın, S., & Tarkın, A. (2015a). Looking at the mirror: A self-study of science teacher educators’ PCK for teaching teachers. Eurasia Journal of Mathematics, Science and Technology Education, 11, 189–205. doi: 10.12973/eurasia.2015.1315a CrossRefGoogle Scholar
  23. Demirdöğen, B., Hanuscin, D. L., Uzuntiryaki-Kondakci, E., & Köseoğlu, F. (2015b). Development and nature of preservice chemistry teachers’ pedagogical content knowledge for nature of science. Research in Science Education. doi: 10.1007/s11165-015-9472-z. (Advance online publication).Google Scholar
  24. Fernández-Balboa, J. M., & Stiehl, J. (1995). The generic nature of pedagogical content knowledge among college professors. Teaching and Teacher Education, 11, 293–306. doi: 10.1016/0742-051X(94)00030-A CrossRefGoogle Scholar
  25. Friedrichsen, P. J., Abell, S. K., Pareja, E. M., Brown, P. L., Lankford, D. M., & Volkmann, M. J. (2009). Does teaching experience matter? Examining biology teachers’ prior knowledge for teaching in an alternative certification program. Journal of Research in Science Teaching, 46, 357–383. doi: 10.1002/tea.20283 CrossRefGoogle Scholar
  26. Friedrichsen, P., & Dana, T. (2005). A substantive-level theory of highly regarded secondary biology teachers’ science teaching orientations. Journal of Research in Science Teaching, 42, 218–244. doi: 10.1002/tea.20046 CrossRefGoogle Scholar
  27. Friedrichsen, P. M., Lankford, D., Brown, P., Pareja, E., Volkmann, M., & Abell, S. K. (2007). The PCK of future science teachers in an alternative certification program. Paper presented at the annual meeting of National Association for Research in Science Teaching Annual Conference, New Orleans, LA.Google Scholar
  28. Friedrichsen, P., van Driel, J. H., & Abell, S. K. (2011). Taking a closer look at science teaching orientations. Science Education, 95, 358–376. doi: 10.1002/sce.20428 CrossRefGoogle Scholar
  29. Gess-Newsome, J. (1999). Pedagogical content knowledge: An introduction and orientation. In J. Gess-Newsome & N. G. Lederman (Eds.), Examining pedagogical content knowledge: The construct and its implications for science education (pp. 3–17). Boston, MA: Kluwer.Google Scholar
  30. Gess-Newsome, J. (2015). A model of teacher professional knowledge and skill including PCK: Results of the thinking from the PCK Summit. In A. Berry, P. Friedrichsen, & J. Loughran (Eds.), Re-examining pedagogical content knowledge in science education (pp. 28–42). New York, NY: Routledge.Google Scholar
  31. Glaser, B. G., & Strauss, A. L. (1967). The discovery of grounded theory: strategies for qualitative research. Chicago, IL: Aldine.Google Scholar
  32. Grossman, P. (1990). The making of a teacher. New York, NY: Teachers College Press.Google Scholar
  33. Hanuscin, D. L., Lee, M. H., & Akerson, V. L. (2011). Elementary teachers’ pedagogical content knowledge for teaching the nature of science. Science Education, 95, 145–167. doi: 10.1002/sce.20404 CrossRefGoogle Scholar
  34. Henze, I., van Driel, J. H., & Verloop, N. (2008). Development of experienced science teachers’ pedagogical content knowledge of models of the solar system and the universe. International Journal of Science Education, 30, 1321–1342. doi: 10.1080/09500690802187017 CrossRefGoogle Scholar
  35. Kember, D., & Gow, L. (1994). Orientations to teaching and their effect on the quality of student learning. The Journal of Higher Education, 65(1), 58–74.CrossRefGoogle Scholar
  36. Khishfe, R., & Abd-El-Khalick, F. (2002). Influence of explicit and reflective versus implicit inquiry-oriented instruction on sixth graders’ views of nature of science. Journal of Research in Science Teaching, 39, 551–578. doi: 10.1002/tea.10036 CrossRefGoogle Scholar
  37. Koballa, T. R., Glynn, S. M., & Upson, L. (2005). Conceptions of teaching science held by novice teachers in an alternative certification program. Journal of Science Teacher Education, 16, 287–308.CrossRefGoogle Scholar
  38. Lederman, N. G. (1992). Students’ and teachers’ conceptions of the nature of science: A review of the research. Journal of Research in Science Teaching, 29, 331–359. doi: 10.1002/tea.3660290404 CrossRefGoogle Scholar
  39. Lederman, N. G., Abd-El-Khalick, F., Bell, R. L., & Schwartz, R. S. (2002). Views of the nature of science questionnaire: Toward valid and meaningful assessment of learners’ conceptions of the nature of science. Journal of Research in Science Teaching, 39, 497–521. doi: 10.1002/tea.10034 CrossRefGoogle Scholar
  40. Lederman, J. S., Lederman, N. G., Bartos, S. A., Bartels, S. L., Meyer, A. A., & Schwartz, R. S. (2014). Meaningful assessment of learners’ understandings about scientific inquiry—The views about scientific inquiry (VASI) questionnaire. Journal of Research in Science Teaching, 51, 65–83. doi: 10.1002/tea.21125 CrossRefGoogle Scholar
  41. Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic inquiry (Vol. 75). New York, NY: Sage.Google Scholar
  42. Loughran, J., Mulhall, P., & Berry, A. (2004). In search of pedagogical content knowledge in science: Developing ways of articulating and documenting professional practice. Journal of Research in Science Teaching, 41, 370–391. doi: 10.1002/tea.20007 CrossRefGoogle Scholar
  43. Luft, J. A., & Roehrig, G. H. (2007). Capturing science teachers’ epistemological beliefs: The development of the teacher beliefs interview. Electronic Journal of Science Education, 11(2). Retrieved from http://www.scholarlyexchange.org/ojs/index.php/EJSE/article/download/7794/5561
  44. Magnusson, S., Krajcik, J., & Borko, H. (1999). Nature, sources and development of pedagogical content knowledge for science teaching. In J. Gess-Newsome & N. G. Lederman (Eds.), Examining pedagogical content knowledge: The construct and its implications for science education (pp. 95–132). Boston, MA: Kluwer.Google Scholar
  45. Marks, R. (1990). Pedagogical content knowledge: From a mathematical case to a modified conception. Journal of Teacher Education, 41(3), 3–11. doi: 10.1177/002248719004100302 CrossRefGoogle Scholar
  46. Marshall, G. B., & Rossman, C. (2011). Designing qualitative research (5th ed.). London: Sage.Google Scholar
  47. McMillan, J. H., & Schumacher, S. (2001). Research in education: A conceptual introduction (5th ed.). New York, NY: Longman.Google Scholar
  48. Merriam, S. B. (2002). Qualitative research in practice: Examples for discussion and analysis. Hoboken, NJ: Wiley.Google Scholar
  49. Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook. Thousand Oaks, CA: Sage.Google Scholar
  50. Mthethwa-Kunene, E., Onwu, G. O., & de Villiers, R. (2015). Exploring biology teachers’ pedagogical content knowledge in the teaching of genetics in Swaziland science classrooms. International Journal of Science Education, 37, 1140–1165. doi: 10.1080/09500693.2015.1022624 CrossRefGoogle Scholar
  51. Musikul, K., & Abell, S. K. (2009). Professional development for elementary teachers of science in Thailand: A holistic examination. Paper presented at the annual international meeting of the National Association for Research in Science Teaching, Garden Grove, CA.Google Scholar
  52. National Research Council (NRC). (1996). National science education standards. Washington, DC: National Academy Press.Google Scholar
  53. Padilla, K., Ponce-de-Leon, A. M., Rembado, F. M., & Garritz, A. (2008). Undergraduate professors’ pedagogical content knowledge: The case of “amount of substance”. International Journal of Science Education, 30, 1389–1404. doi: 10.1080/0950069080218703 CrossRefGoogle Scholar
  54. Padilla, K., & van Driel, J. (2011). The relationships between PCK components: The case of quantum chemistry professors. Chemistry Education Research and Practice, 12(3), 367–378. doi: 10.1039/C1RP90043A CrossRefGoogle Scholar
  55. Park, S., & Chen, Y. C. (2012). Mapping out the integration of the components of pedagogical content knowledge (PCK): Examples from high school biology classrooms. Journal of Research in Science Teaching, 49, 922–941. doi: 10.1002/tea.21022 CrossRefGoogle Scholar
  56. Park, S., & Oliver, J. S. (2008). Revisiting the conceptualization of pedagogical content knowledge (PCK): PCK as a conceptual tool to understand teachers as professionals. Research in Science Education, 38, 261–284. doi: 10.1007/s11165-007-9049-6 CrossRefGoogle Scholar
  57. Patton, M. Q. (2002). Qualitative evaluation and research methods (3rd ed.). Thousand Oaks, CA: Sage.Google Scholar
  58. Punch, K. F. (2005). Introduction to social research: Quantitative and qualitative approaches (2nd ed.). London: Sage.Google Scholar
  59. Putnam, T. R., & Borko, H. (1997). Teacher learning: Implications of new views on cognition. In B. Biddle, T. Good, & I. Goodson (Eds.), International handbook of teachers and teaching (pp. 1223–1296). Dordrecht: Kluwer Academic.CrossRefGoogle Scholar
  60. Roberts, D. A. (1988). What counts as science education? In P. Fensham (Ed.), Development and dilemma in science education (pp. 27–54). Barcecome: Falmer Press.Google Scholar
  61. Roberts, D. A. (2007). Scientific literacy/science literacy. In S. K. Abell & N. Lederman (Eds.), Handbook of research in science education (pp. 729–780). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  62. Schwartz, R. S., & Lederman, N. G. (2002). It’s the nature of the beast: The influence of knowledge and intentions on learning and teaching nature of science. Journal of Research in Science Teaching, 39, 205–236. doi: 10.1002/tea.10021 CrossRefGoogle Scholar
  63. Schwartz, R. S., Lederman, N. G., & Lederman, J. S. (2008). An instrument to assess views of scientific inquiry: The VOSI questionnaire. Paper presented at the annual meeting of the National Association for Research in Science Teaching. Baltimore, MD.Google Scholar
  64. Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4–14.CrossRefGoogle Scholar
  65. Shulman, L. S. (1987). Knowledge and training: Foundations of the new reform. Hardward Educational Review, 57, 1–22. doi: 10.17763/haer.57.1.j463w79r56455411 Google Scholar
  66. van Driel, J. H., Verloop, N., & de Vos, W. (1998). Developing science teachers’ pedagogical content knowledge. Journal of Research in Science Teaching, 35, 673–695. doi: 10.1002/(SICI)1098-2736(199808)35:6<673:AID-TEA5>3.0.CO;2-J CrossRefGoogle Scholar
  67. Walter, E. M. (2013). The influence of pedagogical content knowledge (PCK) for teaching macroevolution on student outcomes in a general education biology course (Unpublished doctoral dissertation). University of Missouri, Columbia, USA.Google Scholar
  68. Yin, R. K. (2009). Case study research: Design and methods (4th ed.). Thousand Oaks, CA: Sage.Google Scholar

Copyright information

© The Association for Science Teacher Education, USA 2016

Authors and Affiliations

  1. 1.Department of Science EducationBulent Ecevit UniversityKdz. EregliTurkey

Personalised recommendations