Skip to main content
Log in

A comparative study of microstructural development in the sol–gel derived alumina–mullite nanocomposites using colloidal silica and tetraethyl orthosilicate

  • Original paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

This paper compares the microstructure development of two alumina–15 vol% mullite composites during the sintering. The nanopowders of alumina–mullite composite were synthesized by the sol–gel method using aluminum chloride hexahydrate and two different silicon sources (colloidal silica in route 1 and tetraethyl orthosilicate in route 2). The alumina–mullite composites were prepared by pressing and sintering of the nanopowders. Although the intergranular mullites were observed in both routes, there were mullite particles in route 2 formed inside the alumina grains (intragranular mullite). Formation of the intragranular mullite is attributed to the drop in silica solubility, which occurs during the transition from metastable alumina to stable alumina. Compared to route 1, the relative density and the average grain size were increased and accelerated by route 2. The two-stage sintering is not useful for the mullite decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Orthorhombic [4]. a = 7.54 ± 0.03 Å; b = 7.693 ± 0.03 Å; c = 2.890 ± 0.01.

  2. Merck 101084.

  3. Sigma–Aldrich 4208404 (40 wt.% suspension in H2O).

  4. Sigma–Aldrich 131903.

References

  1. Richerson DW (1992) Modern ceramic engineering. Marcel Dekker, New York, pp 808–823

    Google Scholar 

  2. Medvedovski E (2006) Alumina–mullite ceramics for structural applications. Ceram Int 32:369–375

    Article  CAS  Google Scholar 

  3. Luo HH, Zhang FC, Roberts SG (2008) Wear resistance of reaction sintered alumina/mullite composites. Mat Sci Eng A 478:270–275

    Article  Google Scholar 

  4. Shackelford JF, Alexander W (2001) Materials science and engineering handbook. CRC Press LLC, USA

    Google Scholar 

  5. Davis RF, Pask JA (1972) Diffusion and reaction studies in the system Al2O3–SiO2. J Am Ceram Soc 55:525–531

    Article  CAS  Google Scholar 

  6. Aksaf IA, Pask JA (1975) Stable and metastable equilibria in the system SiO2–Al2O3. J Am Ceram Soc 58:507–512

    Article  Google Scholar 

  7. Aksay IA, Dabbs DM, Sarikaya M (1991) Mullite for structural, electronic, and optical applications. J Am Ceram Soc 74:2343–2358

    Article  CAS  Google Scholar 

  8. Mezquita S, Uribe R, Moreno R, Baudín C (2001) Influence of mullite additions on thermal shock resistance of dense alumina materials, Part 2: Thermal properties and thermal shock behaviour. Br Ceram Trans 100(6):246–250

    Article  CAS  Google Scholar 

  9. Aksel C (2003) The effect of mullite on the mechanical properties and thermal shock behaviour of alumina–mullite refractory materials. Ceram Int 29:183–188

    Article  CAS  Google Scholar 

  10. Zhang FC, Luo HH, Roberts SG (2007) Mechanical properties and microstructure of Al2O3/mullite composite. J Mater Sci 42:6798–6802

    Article  CAS  Google Scholar 

  11. Aksel C (2002) The role of fine alumina and mullite particles on the thermomechanical behaviour of alumina–mullite refractory materials. Mater Lett 57:708–714

    Article  CAS  Google Scholar 

  12. Moreno R, Mezquita S, Baudín C (2001) Influence of mullite additions on thermal shock resistance of dense alumina materials, Part 1: Processing studies. Br Ceram Trans 100(6):241–245

    Article  CAS  Google Scholar 

  13. Thompson AM, Soni KK, Chan HM, Harmer MP, Williams DB, Chabala JM, Levi-Scotti R (1997) Dopant distributions in rare-earth-doped alumina. J Am Ceram Soc 80(2):373–376

    Article  CAS  Google Scholar 

  14. Fang J, Thompson AM, Harmer MP, Chan HM (1997) Effect of yttrium and lanthanum on the final-stage sintering behavior of ultrahigh-purity alumina. J Am Ceram Soc 80(8):2005–2012

    Article  CAS  Google Scholar 

  15. Schehl M, Díaz LA, Torrecilla R (2002) Alumina nanocomposites from powder-alkoxide mixtures. Acta Mater 50:1125–1139

    Article  CAS  Google Scholar 

  16. Won CW, Siffert B (1998) Preparation by sol–gel method of SiO2 and mullite (3Al203·2SiO2) powders and study of their surface characteristics by inverse gas chromatography and zetametry. Colloid Surf A Physicochem Eng Asp 131:161–172

    Article  CAS  Google Scholar 

  17. Standard Test Method for Water Absorption, Bulk Density, Apparent Porosity, and Apparent Specific Gravity of Fired Whiteware Products, ASTM Designation (2005) :C 373–388, ASTM standards, vol. 15.02

  18. Powder Diffraction File, Card No. 10-0425, JCPDS

  19. Powder Diffraction File, Card No. 04-0878, JCPDS

  20. Powder Diffraction File, Card No. 01-087-2096, JCPDS

  21. Powder Diffraction File, Card No. 01-085-0419, JCPDS

  22. Sedaghat A, Taheri-Nassaj E, Naghizadeh R (2006) An alumina mat with a nano microstructure prepared by centrifugal spinning method. J Non-cryst Solids 352:2818–2828

    Article  CAS  Google Scholar 

  23. Powder Diffraction File, Card No. 15-0776, JCPDS

  24. Powder Diffraction File, Card No. 10-0173, JCPDS

  25. Jacobson NS (1993) Corrosion of silicon-based ceramics in combustion environments. J Am Ceram Soc 76(1):3–28

    Article  CAS  Google Scholar 

  26. Opila EJ (2003) Oxidation and volatilization of silica formers in water vapor. J Am Ceram Soc 86(8):1238–1248

    Article  CAS  Google Scholar 

  27. Hildmann B, Braue W, Schneider H (2008) Topotactic growth of α-alumina platelets on 2/1 mullite single crystal surfaces upon thermal decomposition of mullite in dry and wet atmospheres. J Eur Ceram Soc 28:407–423

    Article  CAS  Google Scholar 

  28. Schneider H, Komarneni S (2005) Mullite. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 236–237

    Book  Google Scholar 

  29. Okada K, Otsuka N, Sh Somiya (1991) Review of mullite synthesis routes in Japan. Am Ceram Soc Bull 70(10):1633–1640

    CAS  Google Scholar 

  30. Huling JF, Messing GL (1992) Chemistry-crystallization relations in molecular mullite gels. J Non-Cryst Solids 147,148: 213–221

    Google Scholar 

  31. Imose M, Takano Y, Yoshinaka M, Hirota K, Yamaguchi O (1998) Novel synthesis of mullite powder with high surface area. J Am Ceram Soc 81(6):1537–1540

    Article  CAS  Google Scholar 

  32. Bowen P, Carry C, Luxembourg D, Hofmann H (2005) Colloidal processing and sintering of nanosized transition aluminas. Powder Technol 157:100–107

    Article  CAS  Google Scholar 

  33. Bodišová K, Šajgalík P, Galusek D, Švančárek P (2007) Two-stage sintering of alumina with submicrometer grain size. J Am Ceram Soc 90(1):330–332

    Article  Google Scholar 

  34. Li J, Ye Y (2006) Densification and grain growth of Al2O3 nanoceramics during pressureless sintering. J Am Ceram Soc 89(1):139–143

    Article  CAS  Google Scholar 

  35. Kanters J, Eisele U, Rödel J (2000) Effect of initial grain size on sintering trajectories. Acta Mater 48:1239–1246

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Taheri-Nassaj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sedaghat, A., Taheri-Nassaj, E., Soraru, G.D. et al. A comparative study of microstructural development in the sol–gel derived alumina–mullite nanocomposites using colloidal silica and tetraethyl orthosilicate. J Sol-Gel Sci Technol 58, 689–697 (2011). https://doi.org/10.1007/s10971-011-2446-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-011-2446-3

Keywords

Navigation