Journal of Sol-Gel Science and Technology

, Volume 58, Issue 3, pp 689–697 | Cite as

A comparative study of microstructural development in the sol–gel derived alumina–mullite nanocomposites using colloidal silica and tetraethyl orthosilicate

  • A. Sedaghat
  • E. Taheri-Nassaj
  • G. D. Soraru
  • T. Ebadzadeh
Original paper


This paper compares the microstructure development of two alumina–15 vol% mullite composites during the sintering. The nanopowders of alumina–mullite composite were synthesized by the sol–gel method using aluminum chloride hexahydrate and two different silicon sources (colloidal silica in route 1 and tetraethyl orthosilicate in route 2). The alumina–mullite composites were prepared by pressing and sintering of the nanopowders. Although the intergranular mullites were observed in both routes, there were mullite particles in route 2 formed inside the alumina grains (intragranular mullite). Formation of the intragranular mullite is attributed to the drop in silica solubility, which occurs during the transition from metastable alumina to stable alumina. Compared to route 1, the relative density and the average grain size were increased and accelerated by route 2. The two-stage sintering is not useful for the mullite decomposition.


Phase evolution Microstructure development Alumina Mullite Nanocomposite 


  1. 1.
    Richerson DW (1992) Modern ceramic engineering. Marcel Dekker, New York, pp 808–823Google Scholar
  2. 2.
    Medvedovski E (2006) Alumina–mullite ceramics for structural applications. Ceram Int 32:369–375CrossRefGoogle Scholar
  3. 3.
    Luo HH, Zhang FC, Roberts SG (2008) Wear resistance of reaction sintered alumina/mullite composites. Mat Sci Eng A 478:270–275CrossRefGoogle Scholar
  4. 4.
    Shackelford JF, Alexander W (2001) Materials science and engineering handbook. CRC Press LLC, USAGoogle Scholar
  5. 5.
    Davis RF, Pask JA (1972) Diffusion and reaction studies in the system Al2O3–SiO2. J Am Ceram Soc 55:525–531CrossRefGoogle Scholar
  6. 6.
    Aksaf IA, Pask JA (1975) Stable and metastable equilibria in the system SiO2–Al2O3. J Am Ceram Soc 58:507–512CrossRefGoogle Scholar
  7. 7.
    Aksay IA, Dabbs DM, Sarikaya M (1991) Mullite for structural, electronic, and optical applications. J Am Ceram Soc 74:2343–2358CrossRefGoogle Scholar
  8. 8.
    Mezquita S, Uribe R, Moreno R, Baudín C (2001) Influence of mullite additions on thermal shock resistance of dense alumina materials, Part 2: Thermal properties and thermal shock behaviour. Br Ceram Trans 100(6):246–250CrossRefGoogle Scholar
  9. 9.
    Aksel C (2003) The effect of mullite on the mechanical properties and thermal shock behaviour of alumina–mullite refractory materials. Ceram Int 29:183–188CrossRefGoogle Scholar
  10. 10.
    Zhang FC, Luo HH, Roberts SG (2007) Mechanical properties and microstructure of Al2O3/mullite composite. J Mater Sci 42:6798–6802CrossRefGoogle Scholar
  11. 11.
    Aksel C (2002) The role of fine alumina and mullite particles on the thermomechanical behaviour of alumina–mullite refractory materials. Mater Lett 57:708–714CrossRefGoogle Scholar
  12. 12.
    Moreno R, Mezquita S, Baudín C (2001) Influence of mullite additions on thermal shock resistance of dense alumina materials, Part 1: Processing studies. Br Ceram Trans 100(6):241–245CrossRefGoogle Scholar
  13. 13.
    Thompson AM, Soni KK, Chan HM, Harmer MP, Williams DB, Chabala JM, Levi-Scotti R (1997) Dopant distributions in rare-earth-doped alumina. J Am Ceram Soc 80(2):373–376CrossRefGoogle Scholar
  14. 14.
    Fang J, Thompson AM, Harmer MP, Chan HM (1997) Effect of yttrium and lanthanum on the final-stage sintering behavior of ultrahigh-purity alumina. J Am Ceram Soc 80(8):2005–2012CrossRefGoogle Scholar
  15. 15.
    Schehl M, Díaz LA, Torrecilla R (2002) Alumina nanocomposites from powder-alkoxide mixtures. Acta Mater 50:1125–1139CrossRefGoogle Scholar
  16. 16.
    Won CW, Siffert B (1998) Preparation by sol–gel method of SiO2 and mullite (3Al203·2SiO2) powders and study of their surface characteristics by inverse gas chromatography and zetametry. Colloid Surf A Physicochem Eng Asp 131:161–172CrossRefGoogle Scholar
  17. 17.
    Standard Test Method for Water Absorption, Bulk Density, Apparent Porosity, and Apparent Specific Gravity of Fired Whiteware Products, ASTM Designation (2005) :C 373–388, ASTM standards, vol. 15.02Google Scholar
  18. 18.
    Powder Diffraction File, Card No. 10-0425, JCPDSGoogle Scholar
  19. 19.
    Powder Diffraction File, Card No. 04-0878, JCPDSGoogle Scholar
  20. 20.
    Powder Diffraction File, Card No. 01-087-2096, JCPDSGoogle Scholar
  21. 21.
    Powder Diffraction File, Card No. 01-085-0419, JCPDSGoogle Scholar
  22. 22.
    Sedaghat A, Taheri-Nassaj E, Naghizadeh R (2006) An alumina mat with a nano microstructure prepared by centrifugal spinning method. J Non-cryst Solids 352:2818–2828CrossRefGoogle Scholar
  23. 23.
    Powder Diffraction File, Card No. 15-0776, JCPDSGoogle Scholar
  24. 24.
    Powder Diffraction File, Card No. 10-0173, JCPDSGoogle Scholar
  25. 25.
    Jacobson NS (1993) Corrosion of silicon-based ceramics in combustion environments. J Am Ceram Soc 76(1):3–28CrossRefGoogle Scholar
  26. 26.
    Opila EJ (2003) Oxidation and volatilization of silica formers in water vapor. J Am Ceram Soc 86(8):1238–1248CrossRefGoogle Scholar
  27. 27.
    Hildmann B, Braue W, Schneider H (2008) Topotactic growth of α-alumina platelets on 2/1 mullite single crystal surfaces upon thermal decomposition of mullite in dry and wet atmospheres. J Eur Ceram Soc 28:407–423CrossRefGoogle Scholar
  28. 28.
    Schneider H, Komarneni S (2005) Mullite. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 236–237CrossRefGoogle Scholar
  29. 29.
    Okada K, Otsuka N, Sh Somiya (1991) Review of mullite synthesis routes in Japan. Am Ceram Soc Bull 70(10):1633–1640Google Scholar
  30. 30.
    Huling JF, Messing GL (1992) Chemistry-crystallization relations in molecular mullite gels. J Non-Cryst Solids 147,148: 213–221Google Scholar
  31. 31.
    Imose M, Takano Y, Yoshinaka M, Hirota K, Yamaguchi O (1998) Novel synthesis of mullite powder with high surface area. J Am Ceram Soc 81(6):1537–1540CrossRefGoogle Scholar
  32. 32.
    Bowen P, Carry C, Luxembourg D, Hofmann H (2005) Colloidal processing and sintering of nanosized transition aluminas. Powder Technol 157:100–107CrossRefGoogle Scholar
  33. 33.
    Bodišová K, Šajgalík P, Galusek D, Švančárek P (2007) Two-stage sintering of alumina with submicrometer grain size. J Am Ceram Soc 90(1):330–332CrossRefGoogle Scholar
  34. 34.
    Li J, Ye Y (2006) Densification and grain growth of Al2O3 nanoceramics during pressureless sintering. J Am Ceram Soc 89(1):139–143CrossRefGoogle Scholar
  35. 35.
    Kanters J, Eisele U, Rödel J (2000) Effect of initial grain size on sintering trajectories. Acta Mater 48:1239–1246CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • A. Sedaghat
    • 1
  • E. Taheri-Nassaj
    • 1
  • G. D. Soraru
    • 2
  • T. Ebadzadeh
    • 3
  1. 1.Department of Materials Science and EngineeringTarbiat Modares UniversityTehranIran
  2. 2.Department of Materials Engineering and Industrial TechnologyUniversity of TrentoTrentoItaly
  3. 3.Materials and Energy Research CentreTehranIran

Personalised recommendations