Skip to main content
Log in

Hydrological insights from hydrogen and oxygen isotopes in Source Area of the Yellow River, east-northern part of Qinghai–Tibet Plateau

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Analyses of stable (D and 18O) and radioactive (T) isotopes of different waters were applied to obtain the hydrological information in watersheds with different frozen ground types in the Source Area of the Yellow River, northeastern of Qinghai–Tibet Plateau in 2014 and 2016. Variations of oxygen and hydrogen isotope ratios, statistically higher tritium concentrations and lower water yields in thaw lakes confirm disparate sources of recharges to thaw lakes and other lakes. Thaw lakes at various stages of evolution influence the surface and subsurface water systems differently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Marchenko SS, Gorbunov AP, Romanovsky VE (2007) Permafrost warming in the Tien Shan mountains, central Asia. Glob Planet Change 56(3):311–327

    Article  Google Scholar 

  2. Woo MK, Kane DL, Carey SK, Yang D (2008) Progress in permafrost hydrology in the new millennium. Permafr Periglac 19(2):237–254

    Article  Google Scholar 

  3. McClelland JW, Holmes RM, Peterson BJ, Stieglitz M (2004) Increasing river discharge in the Eurasian Arctic: consideration of dams, permafrost thaw, and fires as potential agents of change. J Geophys Res 109:D18102

    Article  Google Scholar 

  4. Niu L, Ye B, Ding Y, Li J, Zhang Y, Sheng Y, Yue G (2016) Response of hydrological processes to permafrost degradation from 1980 to 2009 in the Upper Yellow River Basin, China. Hydrol Res 47(5):1014–1024

    Article  Google Scholar 

  5. Jin H, He R, Cheng G, Wu Q, Wang S, Lü L, Chang X (2009) Changes in frozen ground in the Source Area of the Yellow River on the Qinghai-Tibet Plateau, China, and their eco-environmental impacts. Environ Res Lett 4(4):045206

    Article  Google Scholar 

  6. Li X, Cheng G, Jin H, Kang E, Che T, Jin R, Shen Y (2008) Cryospheric change in China. Glob Planet Change 62(3):210–218

    Article  Google Scholar 

  7. Hu Y, Maskey S, Uhlenbrook S (2012) Trends in temperature and rainfall extremes in the Yellow River source region, China. Clim Change 110(1–2):403–429

    Article  Google Scholar 

  8. Jin HJ, Wang SL, Lu LZ, He RX, Chang XL, Luo DL (2010) Features and degradation of frozen ground in the sources area of the Yellow River, China. Glaciol Geocryol 32(1):10–17

    Google Scholar 

  9. Duan S, Fan S, Cao G, Liu X, Sun Y (2015) The changing features and cause analysis of the lakes in the source regions of the Yellow River from 1976 to 2014. J Glaciol Geocryol 37:745–756

    Google Scholar 

  10. Kendall C, McDonnell JJ (2012) Isotope tracers in catchment hydrology. Elsevier, Amsterdam

    Google Scholar 

  11. Sánchez-España J, Ercilla MD, Cerdán FP, Yusta I, Boyce AJ (2014) Hydrological investigation of a multi-stratified pit lake using radioactive and stable isotopes combined with hydrometric monitoring. J Hydrol 511:494–508

    Article  CAS  Google Scholar 

  12. Craig H, Gordon LI, Horibe Y (1963) Isotopic exchange effects in the evaporation of water: 1. Low-temperature experimental results. J Geophys Res 68(17):5079–5087

    Article  CAS  Google Scholar 

  13. Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16(4):436–468

    Article  Google Scholar 

  14. Gat J, Gonfiantini R (1981) Stable isotope hydrology. Deuterium and oxygen-18 in the water cycle. International Atomic Energy Agency (IAEA): IAEA

  15. Kirichek O, Soper A, Dzyuba B, Callear S, Fuller B (2015) Strong isotope effects on melting dynamics and ice crystallisation processes in cryo vitrification solutions. PLoS ONE 10(3):e0120611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hayashi M, Quinton WL, Pietroniro A, Gibson JJ (2004) Hydrologic functions of wetlands in a discontinuous permafrost basin indicated by isotopic and chemical signatures. J Hydrol 296(1):81–97

    Article  CAS  Google Scholar 

  17. Streletskiy DA, Tananaev NI, Opel T, Shiklomanov NI, Nyland KE, Streletskaya ID, Shiklomanov AI (2015) Permafrost hydrology in changing climatic conditions: seasonal variability of stable isotope composition in rivers in discontinuous permafrost. Environ Res Lett 10(9):095003

    Article  CAS  Google Scholar 

  18. Yang Y, Wu Q, Yun H, Jin H, Zhang Z (2016) Evaluation of the hydrological contributions of permafrost to the thermokarst lakes on the Qinghai-Tibet Plateau using stable isotopes. Glob Planet Change 140:1–8

    Article  Google Scholar 

  19. Lacelle D, Vasil’chuk YK (2013) Recent progress (2007–2012) in permafrost isotope geochemistry. Permafr Periglac 24(2):138–145

    Article  Google Scholar 

  20. Gibson JJ, Birks SJ, Yi Y (2016) Higher tritium concentrations measured in permafrost thaw lakes in northern Alberta. Hydrol Process 30(2):245–249

    Article  CAS  Google Scholar 

  21. Hiyama T, Asai K, Kolesnikov AB, Gagarin LA, Shepelev VV (2013) Estimation of the residence time of permafrost groundwater in the middle of the Lena River basin, eastern Siberia. Environ Res Lett 8(3):035040

    Article  Google Scholar 

  22. Wang SL, Wang P, Zhang TJ (1989) Applications of environmental isotope tritium to research into ground ice in permafrost regions of Qinghai-Xizang Plateau. Glaciol Geocryol 1:006

    Google Scholar 

  23. Wang SL et al (1990) Research on tritium in surface and subface water in the eastern Qinghai-Tibet Plateau. Environ Sci 1:004

    Google Scholar 

  24. Samalavičius V, Mokrik R (2016) Tritium activity trend formation in groundwater of Quaternary aquifer system, south-eastern Lithuania. Geol Geogr 2(4):173–181

    Article  Google Scholar 

  25. Caschetto M, Colombani N, Mastrocicco M, Petitta M, Aravena R (2016) Estimating groundwater residence time and recharge patterns in a saline coastal aquifer. Hydrol Process 30(22):4202–4213

    Article  Google Scholar 

  26. McGlynn BL, McDonnell JJ, Seibert J, Kendall C (2004) Scale effects on headwater catchment runoff timing, flow sources, and groundwater-streamflow relations. Water Resour Res 40(7):W07504

    Article  Google Scholar 

  27. Guan B (1986) The extrapolation of tritium in the precipitation of China. Hydrogeol Eng Geol 13(4):38–42

    Google Scholar 

  28. Gibson JJ, Birks SJ, Yi Y (2016) Stable isotope mass balance of lakes: a contemporary perspective. Quat Sci Rev 131:316–328

    Article  Google Scholar 

  29. Ren W, Yao T, Yang X, Joswiak DR (2013) Implications of variations in δ 18 O and δD in precipitation at Madoi in the eastern Tibetan Plateau. Quat Int 313:56–61

    Article  Google Scholar 

  30. Yi Y, Brock BE, Falcone MD, Wolfe BB, Edwards TW (2008) A coupled isotope tracer method to characterize input water to lakes. J Hydrol 350(1):1–13

    Article  Google Scholar 

  31. Yang Y, Wu Q, Jin H (2016) Evolutions of water stable isotopes and the contributions of cryosphere to the alpine river on the Tibetan Plateau. Environ Earth Sci 75(1):49

    Article  CAS  Google Scholar 

  32. Tong L, Xu X, Fu Y, Li S (2014) Wetland changes and their responses to climate change in the “three-river headwaters” region of China since the 1990s. Energies 7(4):2515–2534

    Article  Google Scholar 

  33. Lin Z, Niu F, Xu Z, Xu J, Wang P (2010) Thermal regime of a thermokarst lake and its influence on permafrost, Beiluhe Basin, Qinghai-Tibet Plateau. Permafr Periglac 21(4):315–324

    Article  Google Scholar 

  34. Luo D, Jin H, Lü L, Wu Q (2014) Spatiotemporal characteristics of freezing and thawing of the active layer in the source areas of the Yellow River (SAYR). Chin Sci Bull 59(24):3034–3045

    Article  Google Scholar 

  35. Liu GS et al (2012) Variation characteristics of stable isotopes in precipitation and river water in Fenghuoshan permafrost watershed. Adv Water Sci 23(5):621

    CAS  Google Scholar 

  36. Zai-po X, Xl-Iai L, Hong-lin Z, Mei-qin H (2015) The three types wetlands area changes preliminary research of Maduo county in the Yellow River Source Zone. J Qinghai Univ 3:010

    Google Scholar 

  37. Karlsson JM, Jaramillo F, Destouni G (2015) Hydro-climatic and lake change patterns in Arctic permafrost and non-permafrost areas. J Hydrol 529:134–145

    Article  Google Scholar 

  38. Zheng MJ, Wan CW, Du MD, Zhou XD, Yi P, Aldahan A, Gong M (2016) Application of Rn-222 isotope for the interaction between surface water and groundwater in the Source Area of the Yellow River. Hydrol Res 47(6):1253–1262

    Article  CAS  Google Scholar 

  39. Ala-Aho P, Soulsby C, Pokrovsky OS, Kirpotin SN, Karlsson J, Serikova S, Tetzlaff D (2018) Using stable isotopes to assess surface water source dynamics and hydrological connectivity in a high-latitude wetland and permafrost influenced landscape. J Hydrol 556:279–293

    Article  CAS  Google Scholar 

  40. Connon RF, Quinton WL, Craig JR, Hayashi M (2014) Changing hydrologic connectivity due to permafrost thaw in the lower Liard River valley, NWT, Canada. Hydrol Process 28(14):4163–4178

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Chinese Academy of Sciences (CAS) Key Research Program (KZZD-EW-13), the National Natural Science Foundation of China (Grant No. 4147229), the State Key Program of National Natural Science of China (Grant No. 51539003) the Funds for State Key Laboratory of Frozen Soil Engineering (Grant No. SKLFSE201301), the China Postdoctoral Science Foundation funded project (Grant No. 2014M562478), Open Foundation of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering (Grant No. 2014490411), Postgraduate Research & Practice Innovation Program of Jiangsu Province (Grant No. KYCX17_0418) and the Fundamental Research Funds for the Central Universities (Grant No. 2017B682X14). The authors are grateful to the reviewer and editors. We also appreciate the help from Prof. J. Gibson and Dr. Y. Yi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengwei Wan.

Appendix

Appendix

See Tables 1, 2, 3, 4, 5, 6 and 7.

Table 2 Watersheds characteristics and details of sampling sites [5, 8]
Table 3 Average (minimum to maximum) tritium and stable isotope values for different water bodies
Table 4 Historic tritium data of precipitation, rivers, lakes, groundwater and ground ice in SAYR
Table 5 Estimation of annual water yields (mm/year) in lakes
Table 6 Tritium concentrations of lakes in different sampling times and gradients
Table 7 Tritium concentration of groundwater in different sampling times and gradient

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, P., Wan, C., Jin, H. et al. Hydrological insights from hydrogen and oxygen isotopes in Source Area of the Yellow River, east-northern part of Qinghai–Tibet Plateau. J Radioanal Nucl Chem 317, 131–144 (2018). https://doi.org/10.1007/s10967-018-5864-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-5864-7

Keywords

Navigation