A Bayesian method with empirically fitted priors for the evaluation of environmental radioactivity: application to low-level radioxenon measurements



The decision that a given detection level corresponds to the effective presence of a radionuclide is still widely made on the basis of a classic hypothesis test. However, the classic framework suffers several drawbacks, such as the conceptual and practical impossibility to provide a probability of zero radioactivity, and confidence intervals for the true activity level that are likely to contain negative and hence meaningless values. The Bayesian framework being potentially able to overcome these drawbacks, several attempts have recently been made to apply it to this decision problem. Here, we present a new Bayesian method that, unlike the previous ones, presents two major advantages together. First, it provides an estimate of the probability of no radioactivity, as well as physically meaningful point and interval estimates for the true radioactivity level. Second, whereas Bayesian approaches are often controversial because of the arbitrary choice of the priors they use, the proposed method permits to estimate the parameters of the prior density of radioactivity by fitting its marginal distribution to previously recorded activity data. The new scheme is first mathematically developed. Then, it is applied to the detection of radioxenon isotopes in noble gas measurement stations of the International Monitoring System of the Comprehensive Nuclear-Test-Ban Treaty.


A priori knowledge Bayesian statistics CTBT Environmental monitoring Fitted prior Radioactivity detection Radioactive xenon 


  1. 1.
    Currie LA (1968) Anal Chem 335:586CrossRefGoogle Scholar
  2. 2.
    ISO 11929-7 (2005) Determination of the detection limit and decision threshold for ionizing radiation measurements, part 7: fundamentals and general applicationsGoogle Scholar
  3. 3.
    Potter WE (1999) Health Phys 76(2):186CrossRefGoogle Scholar
  4. 4.
    MARLAP Multi-agency radiological laboratory analytical protocols manual (2004) vol. 20: detection and quantification capabilities [http://mccroan.com/marlap.htm]
  5. 5.
    ISO 11929:2010(E) (2010) Determination of the characteristic limits (decision threshold, detection limit and limits of the confidence interval) for measurements of ionizing radiation—fundamentals and application, 1st ednGoogle Scholar
  6. 6.
    Zähringer M, Kirchner G (2008) Nucl Instrum Methods Phys Res A 594:400CrossRefGoogle Scholar
  7. 7.
    Vivier A, Le Petit G, Pigeon B, Blanchard X (2009) J Radioanal Nucl Chem 282:743CrossRefGoogle Scholar
  8. 8.
    Robert CP (2001) The Bayesian choice: from decision-theoretic motivations to computational implementation, 2nd edn. Springer, New YorkGoogle Scholar
  9. 9.
    Leonard T, Hsu JSJ (1999) Bayesian methods: an analysis for statisticians and interdisciplinary researchers. Cambridge University Press, CambridgeGoogle Scholar
  10. 10.
    Donnelly P (2005) Significance 2(1):46CrossRefGoogle Scholar
  11. 11.
    CTBT. Text of Comprehensive Nuclear-Test-Ban Treaty (1996) See Web Page of the United Nations Office for Disarmament Affairs (UNODA), Multilateral Arms Regulation and Disarmament Agreements, CTBT [http://disarmament.un.org/TreatyStatus.nsf]
  12. 12.
    Hoffmann W, Kebeasy R, Firbas P (1999) Phys Earth Planet Interiors 113:5CrossRefGoogle Scholar
  13. 13.
    Zähringer M, Becker A, Nikkinen M, Saey P, Wotawa G (2009) J Radioanal Nucl Chem 282:737CrossRefGoogle Scholar
  14. 14.
    Fontaine JP, Pointurier F, Blanchard X, Taffary T (2004) J Environ Radioact 72:129CrossRefGoogle Scholar
  15. 15.
    Le Petit G, Armand P, Brachet G, Taffary T, Fontaine JP, Achim P, Blanchard X, Piwowarczyk JC, Pointurier F (2008) J Radioanal Nucl Chem 276:391CrossRefGoogle Scholar
  16. 16.
    Ringbom A, Larson T, Axelsson A, Elmgren K, Johansson C (2003) J Radioanal Nucl Chem A 508:542Google Scholar
  17. 17.
    Dubasov YV, Popov YS, Prelovskii VV, Donets AY, Kazarinov NM, Mishurinskii VV, Popov VY, Rykov YM, Skirda NV (2005) Instrum Exp Tech 48:373CrossRefGoogle Scholar
  18. 18.
    Schulze J, Auer M, Werzi R (2000) Appl Radiat Isot 53:23CrossRefGoogle Scholar
  19. 19.
    Auer M, Axelsson A, Blanchard X, Bowyer TW, Brachet G, Bulowski I, Dubasov Y, Elmgren K, Fontaine JP, Harms W, Hayes JC, Heimbigner TR, McIntyre JI, Panisko ME, Popov Y, Ringbom A, Sartorius H, Schmid S, Schulze J, Schlosser C, Taffary T, Weiss W, Wernsperger B (2004) Appl Radiat Isot 60:863CrossRefGoogle Scholar
  20. 20.
    Stocki TJ, Blanchard X, D’Amours R, Ungar RK, Fontaine JP, Sohier M, Bean M, Taffary T, Racine J, Tracy BL, Brachet G, Jean M, Meyerhof D (2005) J Environ Radioact 80:305CrossRefGoogle Scholar
  21. 21.
    Saey PRJ, Schlosser C, Achim P, Auer M, Axelsson A, Becker A, Blanchard X, Brachet G, Cella L, De Geer L-E, Kalinowski MB, Le Petit G, Peterson J, Popov V, Popov Y, Ringbom A, Sartorius H, Taffary T, Zähringer M (2010) Pure Appl Geophys 167:499CrossRefGoogle Scholar
  22. 22.
    Ringbom A, Elmgren K, Lindh K, Peterson J, Bowyer TW, Hayes JC, McIntyre JI, Panisko M, Williams R (2009) J Radioanal Nucl Chem 282:773CrossRefGoogle Scholar
  23. 23.
    England TR, Rider BF (1993) Los Alamos National Laboratory, LA-UR-94-3106, ENDF-349Google Scholar
  24. 24.
    Fletcher R (1987) Practical methods of optimization, 2nd edn. Wiley, New YorkGoogle Scholar
  25. 25.
    Currie LA (2007) J Radioanal Nucl Chem 276:285CrossRefGoogle Scholar
  26. 26.
    Heinrich J (2003) Pittfals of goodness-of-fit from likelihood. PHYSTAT2003, SLAC, Stanford, CA, September 8–11Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  • I. Rivals
    • 1
  • C. Fabbri
    • 1
  • G. Euvrard
    • 1
    • 2
  • X. Blanchard
    • 3
  1. 1.Équipe de Statistique AppliquéeESPCI ParisTechParisFrance
  2. 2.AnagosParisFrance
  3. 3.CEA, DAM, DIFArpajonFrance

Personalised recommendations