Modeling the mechanical behavior and impact properties of polypropylene and copolymer polypropylene

  • J. L. Bouvard
  • B. Denton
  • L. Freire
  • M.F. Horstemeyer
Original Paper


We present a general internal state variable (ISV) elastic-viscoplastic constitutive model that was initially applied to amorphous polymers (Bouvard et al J Eng Mater Technol 131(4), 041206, 2013) but has been extended to apply to semi-crystalline polymers along with a fracture criterion. In this work, we experimentally calibrated and validated the mechanical behavior of two semi-crystalline polymers (a polypropylene (PP) and a copolymer polypropylene (co-PP)) under different stress states, temperatures, and nominal strain rates. The experiments included compression, tension, impact, and three point bending tests with the notion of capturing the time, temperature, stress state dependence, and failure mechanisms under large strains. The ISV model was integrated into a finite element (FE) code and the FE simulations agreed very well with the PP and co-PP mechanical behavior under compression, impact, and three point bending thus exercising the model under different nominal strain rates, temperatures, and stress states. Two failure criteria were determined from the numerical simulations to build failure criteria maps that distinguished brittle and ductile failure as validated by the experimental observations. This study illustrates the generality of the Bouvard et al. (J Eng Mater Technol 131(4), 041206, 2013), which was previously employed to analyze an amorphous polycarbonate polymer.


Modeling Failure Semi-cristalline polymer 



We would like to thank Mr. Jim Kolb, senior director of Automotive for the American Chemistry Council for funding this effort under Grant No. 011104-001 as well as Dr. Mike Wyzgoski, consultant for American Chemistry Council, for his guidance in this project. The authors would also like to thank ExxonMobil Chemical Company for providing the different thermoplastics investigated in this project and the Center for Advanced Vehicular Systems (CAVS) at Mississippi State University for its support. CAVS acknowledges the collaboration provided through the SIMULIA Research & Development program under which licenses of ABAQUS were provided.


  1. 1.
    Aboulfaraj M, G’sell C, Ulrich B, Dahoun A (1995) In situ observation of the plastic deformation of polypropylene spherulites under uniaxial tension and simple shear in the scanning electron microscope. Polymer 36(4):731–742CrossRefGoogle Scholar
  2. 2.
    Ahzi S, Makradi A, Gregory RV, Edie DD (2003) Modeling of deformation behavior and strain-induced crystallization in poly (ethylene terephthalate) above the glass transition temperature. Mech Mater 35(12):1139–1148CrossRefGoogle Scholar
  3. 3.
    Ames NM, Srivastava V, Chester SA, Anand L (2009) A thermo-mechanically coupled theory for large deformations of amorphous polymers. Part II: Applications. Int J Plast 25(8):1495–1539CrossRefGoogle Scholar
  4. 4.
    Arruda EM, Boyce MC (1993) A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J Mech Phys Solids 41(2):389–412CrossRefGoogle Scholar
  5. 5.
    Bédoui F, Diani J, Régnier G, Seiler W (2006) Micromechanical modeling of isotropic elastic behavior of semicrystalline polymers. Acta Mater 54(6):1513–1523CrossRefGoogle Scholar
  6. 6.
    Bouvard JL, Ward DK, Hossain D, Nouranian S, Marin EB, Horstemeyer MF (2009) Review of hierarchical multiscale modeling to describe the mechanical behavior of amorphous polymers. J Eng Mater Technol 131(4):041206CrossRefGoogle Scholar
  7. 7.
    Bouvard JL, Francis DK, Tschopp MA, Marin EB, Bammann DJ, Horstemeyer MF (2013) An internal state variable material model for predicting the time, thermomechanical, and stress state dependence of amorphous glassy polymers under large deformation. Int J Plast 42:168–193CrossRefGoogle Scholar
  8. 8.
    Bowden PB, Young RJ (1974) Deformation mechanisms in crystalline polymers. J Mater Sci 9(12):2034–2051CrossRefGoogle Scholar
  9. 9.
    Boyce MC, Montagut EL, Argon AS (1992) The effects of thermomechanical coupling on the cold drawing process of glassy polymers. Polym Eng Sci 32(16):1073–1085CrossRefGoogle Scholar
  10. 10.
    Chiu HT, Shiau YG, Chiu WM, Syau SS (1995) Toughening isotactic polypropylene and propylene-ethylene block copolymer with styrene-ethylene butylene-styrene triblock copolymer. J Polym Res 2(1):21–29CrossRefGoogle Scholar
  11. 11.
    Chou CJ, Vijayan K, Kirby D, Hiltner A, Baer E (1988) Ductile-to-brittle transition of rubber-modified polypropylene. J Mater Sci 23(7):2533–2545CrossRefGoogle Scholar
  12. 12.
    Daiyan H, Andreassen E, Grytten F, Lyngstad OV, Luksepp T, Osnes H (2010) Low-velocity impact response of injection-moulded polypropylene plates–part 1: effects of plate thickness, impact velocity and temperature. Polym Test 29(6):648–657CrossRefGoogle Scholar
  13. 13.
    Delhaye V, Clausen AH, Moussy F, Hopperstad OS, Othman R (2010) Mechanical response and microstructure investigation of a mineral and rubber modified polypropylene. Polym Test 29(7):793–802CrossRefGoogle Scholar
  14. 14.
    Drozdov AD (2008) Cyclic elastoplasticity of solid polymers. Comput Mater Sci 42(1):27–35CrossRefGoogle Scholar
  15. 15.
    Drozdov AD, Gupta RK (2003) Constitutive equations in finite viscoplasticity of semicrystalline polymers. Int J Solids Struct 40(23):6217–6243CrossRefGoogle Scholar
  16. 16.
    Dusunceli N, Colak OU (2008) Modelling effects of degree of crystallinity on mechanical behavior of semicrystalline polymers. Int J Plast 24(7):1224–1242CrossRefGoogle Scholar
  17. 17.
    Ebert C, Hufenbach W, Langkamp A, Gude M (2011) Modelling of strain rate dependent deformation behaviour of polypropylene. Polym Test 30(2):183–187CrossRefGoogle Scholar
  18. 18.
    ExxonMobil TM AXO3BE3 Datasheet. 2012Google Scholar
  19. 19.
    ExxonMobil TM PP1105E1 Datasheet. 2012Google Scholar
  20. 20.
    Gensler R, Plummer CJG, Grein C, Kausch HH (2000) Influence of the loading rate on the fracture resistance of isotactic polypropylene and impact modified isotactic polypropylene. Polymer 41(10):3809–3819CrossRefGoogle Scholar
  21. 21.
    Gent AN (1996) A new constitutive relation for rubber. Rubber Chem Technol 69(1):59–61CrossRefGoogle Scholar
  22. 22.
    Ghorbel E (2008) A viscoplastic constitutive model for polymeric materials. Int J Plast 24(11):2032–2058CrossRefGoogle Scholar
  23. 23.
    Hongjun C, Xiaolie L, Xiangxu C, Dezhu M, Jianmin W, Hongsheng T (1999) Structure and properties of impact copolymer polypropylene. II. Phase structure and crystalline morphology. J Appl Polym Sci 71(1):103–113CrossRefGoogle Scholar
  24. 24.
    Horstemeyer MF, Bammann DJ (2010) Historical review of internal state variable theory for inelasticity. Int J Plast 26(9):1310–1334. doi: 10.1016/j.ijplas.2010.06.005
  25. 25.
    Ishikawa M, Narisawa I, Ogawa H (1977) Criterion for craze nucleation in polycarbonate. J Polym Sci Polym Phys Ed 15(10):1791–1804CrossRefGoogle Scholar
  26. 26.
    Jourdan C, Cavaille JY, Perez J (1989) Mechanical relaxations in polypropylene: a new experimental and theoretical approach. J Polym Sci B Polym Phys 27(11):2361–2384CrossRefGoogle Scholar
  27. 27.
    Kolarik J, Pegoretti A, Fambri L, Penati A (2000) Polypropylene/elastomer/poly(styrene-co-acrylonitrile) blends: manifestation of the critical volume fraction of SAN in dynamic mechanical, tensile and impact properties. J Polym Res 7(1):7–14CrossRefGoogle Scholar
  28. 28.
    Krempl E, Khan F (2003) Rate (time)-dependent deformation behavior: an overview of some properties of metals and solid polymers. Int J Plast 19(7):1069–1095CrossRefGoogle Scholar
  29. 29.
    Lee BJ, Parks DM, Ahzi S (1993) Micromechanical modeling of large plastic deformation and texture evolution in semi-crystalline polymers. J Mech Phys Solids 41(10):1651–1687CrossRefGoogle Scholar
  30. 30.
    Makradi A, Ahzi S, Gregory RV, Edie DD (2005) A two-phase self-consistent model for the deformation and phase transformation behavior of polymers above the glass transition temperature: application to PET. Int J Plast 21(4):741–758CrossRefGoogle Scholar
  31. 31.
    Marchal Y, Oldenhove B, Daoust D, Legras R, Delannay F (1998) Characterization of the fracture toughness of rubber‐toughened polypropylene thin plates. Polym Eng Sci 38(12):2063–2071CrossRefGoogle Scholar
  32. 32.
    Narisawa I, Yee A (2006) Crazing and fracture of polymers. Mater Sci TechnolGoogle Scholar
  33. 33.
    Nikolov S, Doghri I (2000) A micro/macro constitutive model for the small-deformation behavior of polyethylene. Polymer 41(5):1883–1891CrossRefGoogle Scholar
  34. 34.
    Nikolov S, Doghri I, Pierard O, Zealouk L, Goldberg A (2002) Multi-scale constitutive modeling of the small deformations of semi-crystalline polymers. J Mech Phys Solids 50(11):2275–2302CrossRefGoogle Scholar
  35. 35.
    Nimmer RP, Woods JT (1992) An investigation of brittle failure in ductile, notch‐sensitive thermoplastics. Polym Eng Sci 32(16):1126–1137CrossRefGoogle Scholar
  36. 36.
    Pawlak A, Galeski A (2005) Plastic deformation of crystalline polymers: the role of cavitation and crystal plasticity. Macromolecules 38(23):9688–9697CrossRefGoogle Scholar
  37. 37.
    Pouriayevali H, Arabnejad S, Guo YB, Shim VPW (2013) A constitutive description of the rate-sensitive response of semi-crystalline polymers. Int J Impact Eng 62:35–47CrossRefGoogle Scholar
  38. 38.
    Regrain C, Laiarinandrasana L, Toillon S, Saï K (2009) Multi-mechanism models for semi-crystalline polymer: constitutive relations and finite element implementation. Int J Plast 25(7):1253–1279CrossRefGoogle Scholar
  39. 39.
    Soni RK, Singh H, Dutt K, Arora P (2010) Effect of dynamic cross-linking on mixing torque behavior and tensile yield behavior of isotactic polypropylene (iPP) / ethylene-propylene diene rubber (EPDM) /nitrile rubber (NBR) elastomeric blends. J Polym Res 17:411–427CrossRefGoogle Scholar
  40. 40.
    Stern C, Frick A, Weickert G (2007) Relationship between the structure and mechanical properties of polypropylene: effects of the molecular weight and shear‐induced structure. J Appl Polym Sci 103(1):519–533CrossRefGoogle Scholar
  41. 41.
    Tai CM, Li RK, Ng CN (2000) Impact behaviour of polypropylene/polyethylene blends. Polym Test 19(2):143–154CrossRefGoogle Scholar
  42. 42.
    Tam WY, Cheung T, Li RKY (1996) An investigation on the impact fracture characteristics of EPR toughened polypropylene. Polym Test 15(4):363–380CrossRefGoogle Scholar
  43. 43.
    Temimi-Maaref N, Burr A, Billon N (2008) Damaging processes in polypropylene compound: experiment and modeling. Polym Sci Ser A 50(5):558–567CrossRefGoogle Scholar
  44. 44.
    Tomita Y, Uchida M (2005) Computational characterization of micro-to mesoscopic deformation behavior of semicrystalline polymers. Int J Mech Sci 47(4):687–700CrossRefGoogle Scholar
  45. 45.
    Uchida M, Tokuda T, Tada N (2010) Finite element simulation of deformation behavior of semi-crystalline polymers with multi-spherulitic mesostructure. Int J Mech Sci 52(2):158–167CrossRefGoogle Scholar
  46. 46.
    Van der Wal A, Gaymans RJ (1999) Polypropylene–rubber blends: 3. The effect of the test speed on the fracture behaviour. Polymer 40(22):6045–6055CrossRefGoogle Scholar
  47. 47.
    Van der Wal A, Nijhof R, Gaymans RJ (1999) Polypropylene–rubber blends: 2. The effect of the rubber content on the deformation and impact behaviour. Polymer 40(22):6031–6044CrossRefGoogle Scholar
  48. 48.
    Van Dommelen JV, Parks DM, Boyce MC, Brekelmans WAM, Baaijens FPT (2003) Micromechanical modeling of the elasto-viscoplastic behavior of semi-crystalline polymers. J Mech Phys Solids 51(3):519–541CrossRefGoogle Scholar
  49. 49.
    Weng G-S, Bao J-B, Xu Y-C, Chen Z-R (2013) New insight into stretch induced structural evolution of α trans-1,4-polyisoprene characterized by real time synchrotron WAXS and SAXS measurements. J Polym Res 20:104CrossRefGoogle Scholar
  50. 50.
    Woods JT, Nimmer RP (2001). Design aids for preventing brittle failure in polycarbonate and polyetherimide. Plastics Failure Analysis and Prevention 267Google Scholar
  51. 51.
    Woods JT, Trantina GG (1999) Material characterization for predicting impact performance of plastic parts (No. 1999-01-3178). SAE Technical PaperGoogle Scholar
  52. 52.
    Wu PD, Van der Giessen E (1995) On neck propagation in amorphous glassy polymers under plane strain tension. Int J Plast 11(3):211–235CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • J. L. Bouvard
    • 1
  • B. Denton
    • 2
  • L. Freire
    • 1
  • M.F. Horstemeyer
    • 2
  1. 1.MINES ParisTechPSL-Research University, CEMEF, UMR 7635Sophia Antipolis CedexFrance
  2. 2.Center for Advanced Vehicular SystemsMississippi State UniversityMississippi StateUSA

Personalised recommendations