Advertisement

Scaling Limits of Solutions of Linear Stochastic Differential Equations Driven by Lévy White Noises

Article

Abstract

Consider a random process s that is a solution of the stochastic differential equation \(\mathrm {L}s = w\) with \(\mathrm {L}\) a homogeneous operator and w a multidimensional Lévy white noise. In this paper, we study the asymptotic effect of zooming in or zooming out of the process s. More precisely, we give sufficient conditions on \(\mathrm {L}\) and w such that \(a^H s(\cdot / a)\) converges in law to a non-trivial self-similar process for some H, when \(a \rightarrow 0\) (coarse-scale behavior) or \(a \rightarrow \infty \) (fine-scale behavior). The parameter H depends on the homogeneity order of the operator \(\mathrm {L}\) and the Blumenthal–Getoor and Pruitt indices associated with the Lévy white noise w. Finally, we apply our general results to several famous classes of random processes and random fields and illustrate our results on simulations of Lévy processes.

Keywords

Lévy white noises Linear SDE Scaling limit Self-similar processes 

Mathematics Subject Classification (2010)

60G18 60G20 60G51 

Notes

Acknowledgements

The authors are grateful to Thomas Humeau for fruitful discussions that led to this work, in particular concerning Proposition 3.5. We also warmly thank Virginie Uhlmann for her help with the simulations. The research leading to these results was funded by the ERC grant agreement No 692726 - FUN-SP.

References

  1. 1.
    Ayache, A., Roueff, F., Xiao, Y.: Local and asymptotic properties of linear fractional stable sheets. Comptes Rend. Math. 344(6), 389–394 (2007)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bentkus, V., Surgailis, D.: Classes of self-similar random fields. Lith. Math. J. 21(2), 117–126 (1981)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Biermé, H., Durieu, O., Wang, Y.: Generalized random fields and l\(\backslash \)’evy’s continuity theorem on the space of tempered distributions. arXiv preprint. arXiv:1706.09326 (2017)
  4. 4.
    Biermé, H., Durieu, O., Wang, Y.: Invariance principles for operator-scaling gaussian random fields. Ann. Appl. Probab. 27(2), 1190–1234 (2017)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Biermé, H., Estrade, A., Kaj, I.: Self-similar random fields and rescaled random balls models. J. Theor. Probab. 23(4), 1110–1141 (2010)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Biermé, H., Meerschaert, M.M., Scheffler, H.-P.: Operator scaling stable random fields. Stoch. Process. Appl. 117(3), 312–332 (2007)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Blu, T., Unser, M.: Self-similarity: part II–optimal estimation of fractal processes. IEEE Trans. Signal Process. 55(4), 1364–1378 (2007)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Blumenthal, R.M., Getoor, R.K.: Sample functions of stochastic processes with stationary independent increments. J. Math. Mech. 10, 493–516 (1961)MathSciNetMATHGoogle Scholar
  9. 9.
    Böttcher, B., Schilling, R., Wang, J.: Lévy Matters III: Lévy-type Processes: Construction, Approximation and Sample Path Properties, vol. 2099. Springer, Berlin (2014)MATHGoogle Scholar
  10. 10.
    Boulicaut, P.: Convergence cylindrique et convergence étroite d’une suite de probabilités de Radon. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete. 28, 43–52 (1973)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Breton, J.C., Dombry, C.: Rescaled weighted random ball models and stable self-similar random fields. Stoch. Process. Appl. 119(10), 3633–3652 (2009)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Dalang, R.C., Humeau, T.: Lévy processes and Lévy white noise as tempered distributions. Ann. Probab. (to appear), arXiv preprint arXiv:1509.05274 (2015)
  13. 13.
    Dalang, R.C., Walsh, J.B.: The sharp Markov property of Lévy sheets. Ann. Probab. 20, 591–626 (1992)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Deng, C.S., Schilling, R.L.: On shift Harnack inequalities for subordinate semigroups and moment estimates for Lévy processes. Stoch. Process. Appl. 125, 3851–3878 (2015)CrossRefMATHGoogle Scholar
  15. 15.
    Dobrushin, R.L.: Gaussian and their subordinated self-similar random generalized fields. Ann. Probab. 7, 1–28 (1979)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Dombry, C., Guillotin-Plantard, N.: Discrete approximation of a stable self-similar stationary increments process. Bernoulli 15(1), 195–222 (2009)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Embrechts, P., Maejima, M.: An introduction to the theory of self-similar stochastic processes. Int. J. Mod. Phys. B 14, 1399–1420 (2000)MathSciNetMATHGoogle Scholar
  18. 18.
    Fageot, J., Amini, A., Unser, M.: On the continuity of characteristic functionals and sparse stochastic modeling. J. Fourier Anal. Appl. 20, 1179–1211 (2014)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Fageot, J., Bostan, E., Unser, M.: Wavelet statistics of sparse and self-similar images. SIAM J. Imaging Sci. 8(4), 2951–2975 (2015)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Fageot, J., Fallah, A., Unser, M.: Multidimensional lévy white noise in weighted besov spaces. Stoch. Process. Appl. 127(5), 1599–1621 (2017)CrossRefMATHGoogle Scholar
  21. 21.
    Fageot, J., Humeau, T.: Unified view on Lévy white noises: general integrability conditions and applications to linear spde. arXiv preprint. arXiv:1708.02500 (2017)
  22. 22.
    Fageot, J., Unser, M., Ward, J.P.: On the Besov regularity of periodic Lévy noises. Appl. Comput. Harmonic Anal. 42(1), 21–36 (2017)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Farkas, W., Jacob, N., Schilling, R.L.: Function spaces related to continuous negative definite functions: psi-Bessel potential spaces. Polska Akademia Nauk, Instytut Matematyczny (2001)Google Scholar
  24. 24.
    Feller, W.: An introduction to probability theory and its applications, vol. 2. Wiley, Hoboken (2008)MATHGoogle Scholar
  25. 25.
    Fernique, X.: Processus linéaires, processus généralisés. Annales de l’Institut Fourier 17, 1–92 (1967)CrossRefMATHGoogle Scholar
  26. 26.
    Gelfand, I.M.: Generalized random processes. Dokl. Akad. Nauk SSSR 100, 853–856 (1955)MathSciNetGoogle Scholar
  27. 27.
    Gelfand, I.M., Vilenkin, N.Y.: Generalized Functions. Applications of Harmonic Analysis, vol. 4. Academic Press, New York (1964)Google Scholar
  28. 28.
    Houdré, C., Kawai, R.: On layered stable processes. Bernoulli 13(1), 252–278 (2007)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Huang, Z., Li, C.: On fractional stable processes and sheets: white noise approach. J. Math. Anal. Appl. 325(1), 624–635 (2007)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Itô, K.: Stationary random distributions. Kyoto J. Math. 28(3), 209–223 (1954)MathSciNetMATHGoogle Scholar
  31. 31.
    Itô, K.: Foundations of Stochastic Differential Equations in Infinite Dimensional Spaces, vol. 47. SIAM, Philadelphia (1984)CrossRefMATHGoogle Scholar
  32. 32.
    Kaj, I., Leskelä, L., Norros, I., Schmidt, V.: Scaling limits for random fields with long-range dependence. Ann. Probab. 35, 528–550 (2007)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Koltz, S., Kozubowski, T.J., Podgorski, K.: The Laplace Distribution and Generalizations. Birkhauser, Boston (2001)CrossRefGoogle Scholar
  34. 34.
    Leland, W.E., Taqqu, M.S., Willinger, W., Wilson, D.V.: On the self-similar nature of ethernet traffic (extended version). IEEE/ACM Trans. Netw. 2(1), 1–15 (1994)CrossRefGoogle Scholar
  35. 35.
    Lodhia, A., Sheffield, S., Sun, X., Watson, S.S.: Fractional gaussian fields: a survey. Probab. Surv. 13, 1–56 (2016)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Mandelbrot, B.B.: The Fractal Geometry of Nature. W. H. Freeman and Co., San Francisco (1982)MATHGoogle Scholar
  37. 37.
    Mandelbrot, B.B.: Fractals and Scaling in Finance. Selected Works of Benoit B. Mandelbrot, pp. x+551. Springer–Verlag, New York (1997)Google Scholar
  38. 38.
    Mandelbrot, B.B., Van Ness, J.W.: Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10(4), 422–437 (1968)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Meise, R., Vogt, D.: Introduction to functional analysis. Oxford University Press, Oxford (1997)MATHGoogle Scholar
  40. 40.
    Mikosch, T., Resnick, S., Rootzén, H., Stegeman, A.: Is network traffic approximated by stable Lévy motion or fractional Brownian motion? Ann. Appl. Probab. 12, 23–68 (2002)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Minlos, R.A.: Generalized random processes and their extension in measure. Trudy Mosk. Matematicheskogo Obshchestva 8, 497–518 (1959)MathSciNetMATHGoogle Scholar
  42. 42.
    Perrin, E., Harba, R., Berzin-Joseph, C., Iribarren, I., Bonami, A.: Nth-order fractional Brownian motion and fractional Gaussian noises. IEEE Trans. Signal Process. 49(5), 1049–1059 (2001)CrossRefGoogle Scholar
  43. 43.
    Pesquet-PopescuU, B., Lévy Véhel, J.: Stochastic fractal models for image processing. Signal Process. Mag. IEEE 19(5), 48–62 (2002)CrossRefGoogle Scholar
  44. 44.
    Pruitt, W.E.: The growth of random walks and Lévy processes. Ann. Probab. 9(6), 948–956 (1981)MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Rajput, B.S., Rosinski, J.: Spectral representations of infinitely divisible processes. Probab. Theory Relat. Fields 82(3), 451–487 (1989)MathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    Samorodnitsky, G., Taqqu, M.S.: Stable Non-Gaussian Processes: Stochastic Models with Infinite Variance. Chapman and Hall, London (1994)MATHGoogle Scholar
  47. 47.
    Sato, K.: Lévy Processes and Infinitely Divisible Distributions, vol. 68. Cambridge University Press, Cambridge (2013)MATHGoogle Scholar
  48. 48.
    Schilling, R.L.: Growth and Hölder conditions for the sample paths of Feller processes. Probab. Theory Relat. Fields 112(4), 565–611 (1998)CrossRefMATHGoogle Scholar
  49. 49.
    Schilling, R.L.: Function spaces as path spaces of Feller processes. Math. Nachr. 217(1), 147–174 (2000)MathSciNetCrossRefMATHGoogle Scholar
  50. 50.
    Sinai, Y.G.: Self-similar probability distributions. Theory Probab. Appl. 21(1), 64–80 (1976)MathSciNetCrossRefMATHGoogle Scholar
  51. 51.
    Sun, Q., Unser, M.: Left-inverses of fractional Laplacian and sparse stochastic processes. Adv. Comput. Math. 36(3), 399–441 (2012)MathSciNetCrossRefMATHGoogle Scholar
  52. 52.
    Tafti, P.D., Unser, M.: Fractional Brownian vector fields. Multiscale Model. Simul. 8(5), 1645–1670 (2010)MathSciNetCrossRefMATHGoogle Scholar
  53. 53.
    Unser, M., Tafti, P.D.: Stochastic models for sparse and piecewise-smooth signals. IEEE Trans. Signal Process. 59(3), 989–1006 (2011)MathSciNetCrossRefGoogle Scholar
  54. 54.
    Unser, M., Tafti, P.D.: An Introduction to Sparse Stochastic Processes. Cambridge University Press, Cambridge (2014)CrossRefMATHGoogle Scholar
  55. 55.
    Vakhania, N., Tarieladze, V., Chobanyan, S.: Probability Distributions on Banach Spaces, Mathematics and Its Applications (Soviet Series), vol. 14. D. Reidel Publishing Co., Dordrecht (1987)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.École polytechnique fédérale de LausanneBiomedical Imaging GroupLausanneSwitzerland

Personalised recommendations