Skip to main content
Log in

Strong Mixing and Operator-Selfdecomposability

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

For nonstationary, strongly mixing sequences of random variables taking their values in a finite-dimensional Euclidean space, with the partial sums being normalized via matrix multiplication, with certain standard conditions being met (an “infinitesimality” assumption, and a restriction to “full” distributions), the possible limit distributions are precisely the operator-self-decomposable laws.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Araujo, A., Gine, E.: The Central Limit Theorem for Real and Banach Valued Random Variables. Wiley, New York (1980)

    MATH  Google Scholar 

  2. Billingsley, P.: Convergence of Probability Measures, 2nd edn. Wiley, New York (1999)

    Book  MATH  Google Scholar 

  3. Bradley, R.C.: Introduction to Strong Mixing Conditions, vol. 1. Kendrick Press, Heber City (2007)

    Google Scholar 

  4. Bradley, R.C., Jurek, Z.J.: The strong mixing and the selfdecomposability properties. Stat. Prob. Lett. 84, 67–71 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dudley, R.M.: Real Analysis and Probability, 2nd edn. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  6. Hahn, M.G., Klass, M.: The multidimensional central limit theorem for arrays normed by affine transformations. Ann. Prob. 9, 611–623 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hille, E.: Functional Analysis and Semi-Groups. American Mathematical Society, New York (1948)

    MATH  Google Scholar 

  8. Hille, E., Phillips, R.S.: Functional Analysis and Semi-groups. American Mathematical Society, Providence (1957)

    Google Scholar 

  9. Jurek, Z.J.: Central limit theorem in Euclidean spaces. Bull. Acad. Polon. Sci. 28, 81–86 (1980)

    MathSciNet  MATH  Google Scholar 

  10. Jurek, Z.J.: An integral representation of operator-selfdecomposable random variables. Bull. Acad. Polon. Sci. 30, 385–393 (1982)

    MathSciNet  MATH  Google Scholar 

  11. Jurek, Z.J., David Mason, J.: Operator-Limit Distributions in Probability Theory. Wiley, New York (1993)

    MATH  Google Scholar 

  12. Meerschaert, M.M., Scheffler, H.P.: Limit Distributions for Sums of Independent Random Vectors: Heavy Tails in Theory and Practice, Wiley Interscience. Wiley, New York (2001)

    Google Scholar 

  13. Montgomery, D., Zippin, L.: Topological Transformation Groups. Interscience Publishers, New York (1955)

    MATH  Google Scholar 

  14. Numakura, K.: On Bicompact Semigroups, vol. 1, pp 99–108, Math. J. Okayama University (1952)

  15. Paalman-De Miranda, A.B.: Topological Semigroups. Mathematisch Centrum, Amsterdam (1964)

    MATH  Google Scholar 

  16. Parthasarathy, K.R.: Probability Measures on Metric Spaces. Academic Press, New York (1967)

    Book  MATH  Google Scholar 

  17. Rosenblatt, M.: A central limit theorem and a strong mixing condition. Proc. Natl. Acad. Sci. USA 42, 43–47 (1956)

  18. Sharpe, M.: Operator-stable probability measures on vector groups. Trans. Am. Math. Soc. 136, 51–65 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  19. Urbanik, K.: Lévy’s probability measures on Euclidean spaces. Studia Math. 44, 119–148 (1972)

    MathSciNet  MATH  Google Scholar 

  20. Urbanik, K.: Lévy’s probability measures on Banach spaces. Studia Math. 63, 283–308 (1978)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors thank the referee and the associate editor for their helpful comments, which improved the exposition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard C. Bradley.

Additional information

Zbigniew J. Jurek: Research funded by Narodowe Centrum Nauki (NCN) Grant No. Dec2011/01/B/ST1/01257.

Appendix

Appendix

For ease of reference let us quote here the following algebraic facts.

Theorem 2

Each locally compact subsemigroup S of a compact group G is a compact subgroup.

Cf. [15], Theorem 1.1.12.

Theorem 3

If \(T:(0,\infty )\rightarrow \mathfrak {B}\) (a real or complex Banach algebra) satisfies

$$\begin{aligned} T (t+s)=T(t)T(s)\ \ \text{ for } \text{ all } \ \ 0< t, s < \infty \ \ \ \text{ and } \ \ \ \lim _{t\rightarrow 0} T(t)=J \ \text{(an } \text{ idempotent) }, \end{aligned}$$

then there exists an element \( A \in \mathfrak {B}\) such that

$$\begin{aligned} T(t)=J+\sum _{n=1}^{\infty }\frac{t^n}{n!}\, A^n \ \ \ \text{(absolutely } \text{ convergent } \text{ series) }. \end{aligned}$$
(37)

Cf. [7], Theorem 8.4.2 or [8], Theorem 9.4.2.

Theorem 4

(Pontriagin Theorem) Suppose a topological group \(G^{\prime }\), generated by a compact set, contains a compact subgroup \(H^{\prime }\) such that \(G^{\prime }/H^{\prime }\) is isomorphic with an \(r\)-dimensional real vector group \(V_r\). Then \(G^{\prime }\) has a vector subgroup \(E_r\) such that \(G^{\prime }= H^{\prime }\oplus E_r\)

Cf. [13], p. 187.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bradley, R.C., Jurek, Z.J. Strong Mixing and Operator-Selfdecomposability. J Theor Probab 29, 292–306 (2016). https://doi.org/10.1007/s10959-014-0575-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-014-0575-7

Keywords

Mathematics Subject Classification

Navigation