Journal of Theoretical Probability

, Volume 20, Issue 4, pp 859–869 | Cite as

Stochastic Equations with Time-Dependent Drift Driven by Levy Processes

  • V. P. Kurenok


The stochastic equation dX t =dS t +a(t,X t )dt, t≥0, is considered where S is a one-dimensional Levy process with the characteristic exponent ψ(ξ),ξ∈ℝ. We prove the existence of (weak) solutions for a bounded, measurable coefficient a and any initial value X 0=x 0∈ℝ when (ℛeψ(ξ))−1=o(|ξ|−1) as |ξ|→∞. These conditions coincide with those found by Tanaka, Tsuchiya and Watanabe (J. Math. Kyoto Univ. 14(1), 73–92, 1974) in the case of a(t,x)=a(x). Our approach is based on Krylov’s estimates for Levy processes with time-dependent drift. Some variants of those estimates are derived in this note.


One-dimensional Levy processes Time-dependent drift Krylov’s estimates Weak convergence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aldous, D.: Stopping times and tightness. Ann. Probab. 6, 335–340 (1978) MATHMathSciNetGoogle Scholar
  2. 2.
    Anulova, S., Pragarauskas, H.: On strong Markov weak solutions of stochastic equations. Liet. Mat. Rink. XVII, 5–26 (1977) MathSciNetGoogle Scholar
  3. 3.
    Bertoin, J.: Levy Processes. Cambridge University Press (1996) Google Scholar
  4. 4.
    Dellacherie, C., Meyer, P.A.: Probabilities et potentiels B. Hermann, Paris (1980) Google Scholar
  5. 5.
    Ikeda, N., Watanabe, S.: Stochastic differential equations and diffusion processes. North-Holland, Tokyo (1989) MATHGoogle Scholar
  6. 6.
    Krylov, N.V.: Controlled Diffusion Processes. Springer, New York (1980) MATHGoogle Scholar
  7. 7.
    Kurenok, V.P.: A note on L 2-estimates for stable integrals with drift. Trans. Am. Math. Soc., to appear Google Scholar
  8. 8.
    Melnikov, A.V.: Stochastic equations and Krylov’s estimates for semimartingales. Stoch. Stoch. Rep. 10, 81–102 (1983) Google Scholar
  9. 9.
    Pragarauskas, H.: On L p-estimates of stochastic integrals. In: Grigelionis, B., et al. (eds.) Probab. Theory and Math. Stat., pp. 579–588. VSP, Utrecht/TEV, Vilnius (1999) Google Scholar
  10. 10.
    Tanaka, H., Tsuchiya, M., Watanabe, S.: Perturbation of drift-type for Levy processes. J. Math. Kyoto Univ. 14(1), 73–92 (1974) MATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Natural and Applied SciencesUniversity of Wisconsin-Green BayGreen BayUSA

Personalised recommendations