Skip to main content
Log in

On the Convergence of a Class of Nonlocal Elliptic Equations and Related Optimal Design Problems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

A convergence result for a nonlocal differential equation problem is proved. As a by-product, some results about the convergence for a type of nonlocal optimal design are given. Since these problems give rise to local design problems in the limit, different results on classical existence are obtained as well. Concerning the nonlocal formulation, the state equation is of nonlocal elliptic type and the cost functional we analyze includes, among other cases, an approximation of the square of the gradient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Here we are using \(\frac{1}{\left| S^{N-1}\right| } \int _{S^{N-1}}\left( \omega .{\mathbf {e}}\right) ^{2}d\sigma \left( \omega \right) =\frac{1}{N}\), where \(\sigma \) stands for the \(\left( N-1\right) -\) dimensional Hausdorff measure on the unit sphere \(S^{N-1}\) and \({\mathbf {e}}\) is any unit vector in \({\mathbb {R}}^{N}.\)

  2. That is, for any \(x\in \varOmega _{\delta }\) and any \(u,v\in {\mathbb {R}}\) there is a constant \(L>0\) such that \(\left| G\left( x,u\right) -G\left( x,v\right) \right| \le L\left| u-v\right| .\)

References

  1. Bates, P.W., Chmaj, A.: An integrodifferential model for phase transitions: stationary solutions in higher space dimensions. J. Stat. Phys. 95(5–6), 1119–1139 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Silling, S.A.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48, 175–209 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bazant, Z.P., Jirasek, M.: Nonlocal integral formulation of plasticity and damage: survey of progress. J. Eng. Mech. 128, 1119–1149 (2002)

    Article  Google Scholar 

  4. Bates, P.W., Zhao, G.: Existence, uniqueness and stability of stationary solution to a nonlocal evolution equation arising in population dispersal. J. Math. Anal. Appl. 332(1), 428–440 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berestycki, H., Nadin, G., Perthame, B., Ryzhik, L.: The non-local Fisher-KPP equation: travelling waves and steady states. Nonlinearity 22(12), 2813–2844 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bobaru, F., Duangpanya, M.: The peridynamic formulation for transient hear conduction. Int. J. Heat Mass Transf. 53, 4047–4059 (2010)

    Article  MATH  Google Scholar 

  7. Boulanger, J., Elbau, P., Pontow, C., Scherzer, O.: Non-local functionals for imaging. In: Fixed-point algorithms for inverse problems in science and engineering, vol. 49, pp. 31–154, Springer, New York (2011)

  8. Alali, B., Lipton, R.: Multiscale dynamics of heterogeneous media in the peridynamic formulation. J. Elast. 106(1), 71–103 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ponce, A.C.: A new approach to Sobolev spaces and connection to \(\varGamma \)-convergence. Cal. Var. 19, 229–255 (2004)

    Article  MathSciNet  Google Scholar 

  10. Chasseigne, E., Chaves, M., Rossi, J.D.: Asymptotic behavior for nonlocal diffusion equations. J. Math. Pures Appl. 86(3), 271–291 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Andreu-Vaillo, F., Mazón, J.M., Rossi, J.D., Toledo-Melero, J.J.: Nonlocal Diffusion Problems, vol. 165. American mathematical society, Providence (2010)

    MATH  Google Scholar 

  12. Gunzburger, M., Lehoucq, R.B.: A nonlocal vector calculus with application to nonlocal boundary value problems. Multscale Model. simul. 8, 1581–1620 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Zhou, K., Du, Q.: Mathematical and numerical analysis of linear peridynamic models with nonlocal boundary conditions. SIAM J. Numer. Anal. 48(5), 1759–1780 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Andreu, F., Mazón, J.M., Rossi, J.D., Toledo-Melero, J.J.: Local and nonlocal weighted p-Laplacian evolution equations with Neumann boundary conditions. Publ. Mat. 55, 27–66 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Du, Q., Gunzburger, M.D., Lehoucq, R.B., Zhou, K.: Analysis and approximation of nonlocal diffusion problems with volume constraints. SIAM Rev. 54(4), 667–696 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Du, Q., Gunzburger, M.D., Lehoucq, R.B., Zhou, K.: A nonlocal vector calculus, nonlocal volume-constrained problems and nonlocal balance laws. Math. Models Methods Appl. Sci. 23, 493–540 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Andrés, F., Muñoz, J.: A type of nonlocal elliptic problem: existence and approximation through a Galerkin–Fourier Method. SIAM J. Math. Anal. 47(1), 498–525 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bellido, J.C., Mora-Corral, C., Pedregal, P.: Hyperelasticity as a \(\varGamma -\)limit of peridynamics when the horizon goes to zero. Cal. Var. (2015). doi:10.1007/s00526-015-0839-9

  19. Mengesha, T., Du, Q.: On the variational limit of a class of nonlocal functionals related to peridynamics. Nonlinearity 28(11), 3999 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Allaire, G.: Shape Optimization by the Homogenization Method. Springer, New York (2002)

    Book  MATH  Google Scholar 

  21. Cherkaev, A., Kohn, R. (eds.): Topics in Mathematical Modeling of Composite Materials. Birkhäuser, Boston (1997)

    MATH  Google Scholar 

  22. Delfour, M.C., Zolésio, J-P.: Shapes and geometries: metrics, analysis, differential calculus, and optimization, vol. 22. SIAM, Philadelphia (2011)

  23. Dal, G.: Maso: An Introduction to \(\varGamma -\)convergence. Birkhäuser, Boston (1993)

    Google Scholar 

  24. Jikov, V.V., Kozlov, S.M., Oleinik, O.A.: Homogenization of Differential Operators and Integral Functionals. Springer, Heidelberg (1994)

    Book  Google Scholar 

  25. Brasco, L., Parini, E., Squassina, M.: Stability for variational eigenvalues for the fractional p-laplacian. arXiv:1503.04182v1 [math.AP] (2015)

  26. D’Elia, M., Gunzburger, M.: Identification of the diffusion parameter in nonlocal steady diffusion problems, arXiv:1310.2558v1 [math.OC] (2013)

  27. D’Elia, M., Gunzburger, M.: Optimal distributed control of nonlocal steady diffusion problems. SIAM J. Control Optim. 52(1), 243–273 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Teixeira, E.V., Teymurazyan, R.: Optimal design problems with fractional diffusions. J. Lond. Math. Soc. (2015). doi:10.1112/jlms/jdv034

  29. Andrés, F., Muñoz, J.: Nonlocal optimal design: a new perspective about the approximation of solutions in optimal design. J. Math. Anal. Appl. 429, 288–310 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Aksoylu, B., Mengesha, T.: Results on nonlocal boundary value problems. Numer. Funct. Anal. Optim. 31, 1301–1317 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hinds, B., Radu, P.: Dirichlet’s principle and wellposedness of solutions for a nonlocal \(p\)-Laplacian system. Appl. Math. Comput. 219, 1411–1419 (2012)

    MathSciNet  MATH  Google Scholar 

  32. Ponce, A.C.: An estimate in the spirit of Poincaré’s inequality. J. Eur. Math. Soc. (JEMS) 6, 1–15 (2004)

    Article  MATH  Google Scholar 

  33. Servadei, R., Valdinoci, E.: Variational methods for non-local operators of elliptic type. Discret. Contin. Dyn. Syst. 33(5), 2105–2137 (2013)

    MathSciNet  MATH  Google Scholar 

  34. Bourgain, J., Brezis, H., Mironescu, P.: Another look at Sobolev spaces, another look at Sobolev spaces. In: J. L. Menaldi, E. Rofman, A. Sulem (eds.) Optimal Control and Partial Differential Equations, vol. 65 A, pp. 439–455. Bensoussan 60th birthday, IOS Press, Amsterdam (2001)

  35. Dacorogna, B.: Direct Methods in the Calculus of Variations. Springer, New York (1989)

    Book  MATH  Google Scholar 

  36. Hernández-Lerma, O., Lasserre, J.B.: Fatou’s Lemma and Lebesgue’s convergence theorem for measures. J. Appl. Math. Stoch. Anal 13(2), 137–146 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  37. Royden, H.L.: Real Analysis. Macmillan Publishing Company, New York (1988)

    MATH  Google Scholar 

  38. Cea, J., Malanowski, K.: An example of a Max–Min problem in partial differential equations. SIAM J. Control 8(3), 305–316 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  39. Kawohl, B., Stara, J., Wittum, G.: Analysis and numerical studies of a problem of shape design. Arch. Ration. Mech. Anal. 114, 349–363 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  40. Pedregal, P.: Parametrized Measures and Variational Principles. Birkhäuser, Boston (1997)

    Book  MATH  Google Scholar 

  41. Brezis, H.: Functional Analysis. Sobolev Spaces and Partial Differential Equations. Springer, New York (2010)

    Book  Google Scholar 

Download references

Acknowledgments

We are profoundly grateful to P. Pedregal for his encouragement and helpful comments. We also want to thank J. C. Bellido for interesting discussions on the subject.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio Muñoz.

Additional information

Communicated by Giuseppe Buttazzo.

Appendices

Appendix A: A Nonlocal Inequality for Measurable Sets

We analyze the limit

$$\begin{aligned} \lim _{\delta \rightarrow 0}\int _{G}\int _{G}k_{\delta }\left( \left| x^{\prime }-x\right| \right) \frac{\left( u_{\delta }\left( x^{\prime }\right) -u_{\delta }\left( x\right) \right) ^{2}}{\left| x^{\prime }-x\right| ^{2}}\hbox {d}x^{\prime }\hbox {d}x \end{aligned}$$

where \(G\subset \varOmega .\) We assume \(u_{\delta }\rightarrow u^{*}\) strongly in \(L^{2}\left( \varOmega \right) \) where \(\left( u_{\delta }\right) \subset X_{0},\) \(u^{*}\in H_{0}^{1}\left( \varOmega \right) ,\ \) and we assume the sequence

$$\begin{aligned} \xi _{\delta }\left( x^{\prime },x\right) \doteq k_{\delta }\left( \left| x^{\prime }-x\right| \right) \frac{\left( u_{\delta }\left( x^{\prime }\right) -u_{\delta }\left( x\right) \right) ^{2}}{\left| x^{\prime }-x\right| ^{2}} \end{aligned}$$

is uniformly bounded in \(L^{1}\left( \varOmega \times \varOmega \right) \).

It is well known that, at least for a subsequence of \(\left( u_{\delta }\right) ,\) the inequality

$$\begin{aligned} \lim _{\delta \rightarrow 0}\int _{G}\int _{G}k_{\delta }\left( \left| x^{\prime }-x\right| \right) \frac{\left( u_{\delta }\left( x^{\prime }\right) -u_{\delta }\left( x\right) \right) ^{2}}{\left| x^{\prime }-x\right| ^{2}}\hbox {d}x^{\prime }\hbox {d}x\ge \int _{G}\left| \nabla u^{*}\left( x\right) \right| ^{2}\hbox {d}x \end{aligned}$$
(39)

holds for every open and bounded \(G\subset \varOmega \) (see [32, p. 12]).

We prove the above inequality for any measurable set \(G\subset \varOmega .\) Since \(\xi _{\delta }\) is uniformly bounded in \(L^{1}\left( \varOmega \times \varOmega \right) ,\) we can apply Chacon’s biting Lemma (see [40]): there exists a subsequence, not relabeled, a nonincreasing sequence of measurable sets \(G_{n}\subset \varOmega \times \varOmega ,\) \(\left| G_{n}\right| \searrow 0\) and \(\xi \in L^{1}\left( \varOmega \times \varOmega \right) \) such that

$$\begin{aligned} \xi _{\delta }\rightharpoonup \xi \text { in }L^{1}\left( \varOmega \times \varOmega \setminus G_{n}\right) \end{aligned}$$
(40)

for all n.

We take into account the identity

$$\begin{aligned} \int _{G}\left| \nabla u^{*}\left( x\right) \right| ^{2} \hbox {d}x=\iint _{G\times G}\frac{\left| \nabla u^{*}\left( x^{\prime }\right) \right| ^{2}+\left| \nabla u^{*}\left( x\right) \right| ^{2} }{2\left| G\right| }\hbox {d}x^{\prime }\hbox {d}x, \end{aligned}$$

and we shall prove for every measurable A

$$\begin{aligned} \iint _{A\times A}\xi \left( x^{\prime },x\right) \hbox {d}x^{\prime }\hbox {d}x\ge \iint _{A\times A}U^{*}\left( x^{\prime },x\right) \hbox {d}x^{\prime }\hbox {d}x=\int _{A}\left| \nabla u^{*}\left( x\right) \right| ^{2}\hbox {d}x \end{aligned}$$
(41)

where \(U^{*}\left( x^{\prime }x\right) \doteq \frac{\left| \nabla u^{*}\left( x^{\prime }\right) \right| ^{2}+\left| \nabla u^{*}\left( x\right) \right| ^{2}}{2\left| A\right| }\). We prove (41) by a contradiction argument. We assume there is a measurable set A such that

$$\begin{aligned} \iint _{A\times A}\xi \hbox {d}x^{\prime }\hbox {d}x<\iint _{A\times A}U^{*}\hbox {d}x^{\prime }\hbox {d}x. \end{aligned}$$

Thereby, we can assume

$$\begin{aligned} \iint _{A\times A}\xi \hbox {d}x^{\prime }\hbox {d}x<\iint _{A\times A}U^{*}\hbox {d}x^{\prime }\hbox {d}x \end{aligned}$$

where \(A\subset \varOmega \) is an open set such that \(\left| A\right| >0.\) In view of the above estimate, the inequality

$$\begin{aligned} \iint _{A\times A\setminus G_{n}}\xi \hbox {d}x^{\prime }\hbox {d}x<\iint _{A\times A\setminus G_{n}}U^{*}\hbox {d}x^{\prime }\hbox {d}x \end{aligned}$$

is true for any n. Then the sequence defined by

$$\begin{aligned} r_{n}\doteq \iint _{A\times A\setminus G_{n}}\left( U^{*}-\xi \right) \hbox {d}x^{\prime }\hbox {d}x \end{aligned}$$

fulfills these requirements:

$$\begin{aligned} r_{n}>0\text { and }r_{n}\nearrow r_{0}\doteq \iint _{A\times A}\left( U^{*}-\xi \right) \hbox {d}x^{\prime }\hbox {d}x>0. \end{aligned}$$

We write

$$\begin{aligned} \iint _{A\times A\setminus G_{n}}\xi \hbox {d}x^{\prime }\hbox {d}x=\iint _{A\times A\setminus G_{n}}U^{*}\hbox {d}x^{\prime }\hbox {d}x-r_{n}, \end{aligned}$$

and we have

$$\begin{aligned} \iint _{A\times A\setminus G_{n}}\xi \hbox {d}x^{\prime }\hbox {d}x<\iint _{A\times A\setminus G_{n}}U^{*}\hbox {d}x^{\prime }\hbox {d}x-\frac{r_{n}}{2} \end{aligned}$$

for any n. Thus, thanks to the convergence (40), the above inequality allows us to write

$$\begin{aligned} \iint _{A\times A\setminus G_{n}}\xi _{\delta }\hbox {d}x^{\prime }\hbox {d}x<\iint _{A\times A\setminus G_{n}}U^{*}\hbox {d}x^{\prime }\hbox {d}x-\frac{r_{n}}{2} \end{aligned}$$

for any n and any \(\delta \le \delta _{0}.\) If we pass to the limit when \(n\rightarrow +\infty ,\) we get

$$\begin{aligned} \iint _{A\times A}\xi _{\delta }\hbox {d}x^{\prime }\hbox {d}x\le \iint _{A\times A}U^{*}\hbox {d}x^{\prime }\hbox {d}x-\frac{r_{0}}{2}. \end{aligned}$$

By taking now limits in \(\delta \rightarrow 0\) and using (39), we have

$$\begin{aligned} \iint _{A\times A}U^{*}\hbox {d}x^{\prime }\hbox {d}x\le \iint _{A\times A}U^{*}\hbox {d}x^{\prime }\hbox {d}x-\frac{r_{0}}{2} \end{aligned}$$

which is a contradiction, and (41) has been proved.

Then, for each n and each measurable set \(G\subset \varOmega ,\) the biting convergence (40) enables us to write

$$\begin{aligned} \lim _{\delta \rightarrow 0}\iint _{G\times G}\xi _{\delta }\left( x^{\prime },x\right) \hbox {d}x^{\prime }\hbox {d}x&\ge \lim _{\delta \rightarrow 0}\iint _{G\times G\setminus G_{n}}\xi _{\delta }\left( x^{\prime },x\right) \hbox {d}x^{\prime }\hbox {d}x\\&=\iint _{G\times G\setminus G_{n}}\xi \left( x^{\prime },x\right) \hbox {d}x^{\prime }\hbox {d}x. \end{aligned}$$

Finally, we take limits when \(n\rightarrow +\infty \) and use (41) to obtain the desired estimate:

$$\begin{aligned} \lim _{\delta \rightarrow 0}\iint _{G\times G}\xi _{\delta }\left( x^{\prime },x\right) \hbox {d}x^{\prime }\hbox {d}x&\ge \lim _{n\rightarrow +\infty }\iint _{G\times G\setminus G_{n}}\xi \left( x^{\prime },x\right) \hbox {d}x^{\prime }\hbox {d}x\\&=\iint _{G\times G}\xi \left( x^{\prime },x\right) \hbox {d}x^{\prime }\hbox {d}x\\&\ge \iint _{G\times G}\frac{\left| \nabla u^{*}\left( x^{\prime }\right) \right| ^{2}+\left| \nabla u^{*}\left( x\right) \right| ^{2}}{2\left| G\right| }\hbox {d}x^{\prime }\hbox {d}x\\&=\int _{G}\left| \nabla u^{*}\left( x\right) \right| ^{2}\hbox {d}x. \end{aligned}$$

Appendix B: \(H_{r}\left( \delta _{0}\right) \ \) is Precompact in \(L^{2}\)

For this goal we shall use (43), an inequality due to Stein (see [9]), (44), an spectral result given in [17] (see also [33]), and a basic compactness result (Proposition B.1).

If \(h\in H_{r}\left( \delta _{0}\right) \) then

$$\begin{aligned} B_{0}\left( h,h\right) =\int _{\varOmega _{\delta _{0}}}\int _{\varOmega _{\delta _{0}} }k_{\delta _{0}}\left( \left| x^{\prime }-x\right| \right) \frac{\left( h^{\prime }-h\right) ^{2}}{\left| x^{\prime }-x\right| ^{2}}\hbox {d}x^{\prime }\hbox {d}x<r, \end{aligned}$$

and \(h=0\) en \(\varOmega _{\delta _{0}}-\varOmega .\) We extend h by zero outside of \(\varOmega _{\delta _{0}}\) and we compute the following integral:

$$\begin{aligned}&\int _{\varOmega _{\delta _{0}+\delta }}\int _{\varOmega _{\delta _{0}+\delta }} k_{\delta _{0}}\left( \left| x^{\prime }-x\right| \right) \frac{\left( h^{\prime }-h\right) ^{2}}{\left| x^{\prime }-x\right| ^{2}}\hbox {d}x^{\prime }\hbox {d}x\\&\quad =\int _{\varOmega _{\delta _{0}}}\int _{\varOmega _{\delta _{0}}}+\int _{\varOmega _{\delta _{0}+\delta }\setminus \varOmega _{\delta _{0}}}\int _{\varOmega _{\delta _{0}+\delta }\setminus \varOmega _{\delta _{0}}}+2\int _{\varOmega _{\delta _{0}}} \int _{\varOmega _{\delta _{0}+\delta }\setminus \varOmega _{\delta _{0}}}. \end{aligned}$$

We note the second integral vanishes because \(h\left( x\right) =h\left( x^{\prime }\right) =0\) if \(\left( x^{\prime },x\right) \in \left( \varOmega _{\delta _{0}+\delta }\setminus \varOmega _{\delta _{0}}\right) \times \left( \varOmega _{\delta _{0}+\delta }\setminus \varOmega _{\delta _{0}}\right) .\)

The third one is zero too because h vanishes outside \(\varOmega \)

$$\begin{aligned}&\int _{\varOmega _{\delta _{0}}}\int _{\varOmega _{\delta _{0}+\delta }\setminus \varOmega _{\delta _{0}}}k_{\delta _{0}}\left( \left| x^{\prime }-x\right| \right) \frac{\left( h\left( x^{\prime }\right) -h\left( x\right) \right) ^{2}}{\left| x^{\prime }-x\right| ^{2}}\hbox {d}x^{\prime }\hbox {d}x\\&\quad =\int _{\varOmega }\int _{\varOmega _{\delta _{0}+\delta }\setminus \varOmega _{\delta _{0}} }k_{\delta _{0}}\left( \left| x^{\prime }-x\right| \right) \frac{\left( h\left( x\right) \right) ^{2}}{\left| x^{\prime }-x\right| ^{2}}\hbox {d}x^{\prime }\hbox {d}x=0 \end{aligned}$$

where the last equality is true thanks to \(k_{\delta _{0}}\left( \left| x^{\prime }-x\right| \right) =0\) for \(\left( x^{\prime },x\right) \in \left( \varOmega _{\delta _{0}+\delta }\setminus \varOmega _{\delta _{0}}\right) \times \left( \varOmega \right) .\)

Therefore

$$\begin{aligned} B_{0}\left( h,h\right) =\int _{\varOmega _{\delta _{0}+\delta }}\int _{\varOmega _{\delta _{0}+\delta }}k_{\delta _{0}}\left( \left| x^{\prime }-x\right| \right) \frac{\left( h^{\prime }-h\right) ^{2}}{\left| x^{\prime }-x\right| ^{2}}\hbox {d}x^{\prime }\hbox {d}x<r. \end{aligned}$$
(42)

Let \(\varphi \in C_{0}^{\infty }\left( B\left( 0,1\right) \right) \) be such that \(\varphi \ge 0\) and \(\int \varphi =1.\) For any \(\delta >0\) we define \(\varphi _{\delta }\left( x\right) \doteq \frac{1}{\delta ^{N}}\varphi \left( \frac{x}{\delta }\right) \) where \(x\in R^{N}.\) At this point we can employ the following inequality

$$\begin{aligned} \int _{\varOmega _{\delta _{0}+\delta }}\int _{\varOmega _{\delta _{0}+\delta }} k_{\delta _{0}}\left( \left| x^{\prime }-x\right| \right) \frac{\left( h^{\prime }-h\right) ^{2}}{\left| x^{\prime }-x\right| ^{2}}\hbox {d}x^{\prime }\hbox {d}x\ge \int _{\varOmega _{\delta _{0}}}\int _{\varOmega _{\delta _{0}} }k_{\delta _{0}}\left( \left| x^{\prime }-x\right| \right) \frac{\left( h_{\delta }^{\prime }-h_{\delta }\right) ^{2}}{\left| x^{\prime }-x\right| ^{2}}\hbox {d}x^{\prime }\hbox {d}x \end{aligned}$$
(43)

where

$$\begin{aligned} h_{\delta }\left( x\right) =\left( \varphi _{\delta }*h\right) \left( x\right) \text { for any }x\in \varOmega _{\delta _{0}-\delta },\text { }\delta _{0}>\delta >0. \end{aligned}$$

Then \(h_{\delta }\) is regular, \({\mathrm{supp}}\,h\subset \overline{\varOmega },\,{\mathrm{supp}}\, \varphi _{\delta }=B\left( 0,\delta \right) ,\) and thus

$$\begin{aligned} {\mathrm{supp}}\, h_{\delta }\subset \overline{\overline{\varOmega } +\overline{B\left( 0,\delta \right) }}=\overline{\varOmega }_{\delta } \subset \varOmega _{\delta _{0}-\delta }\subset \varOmega _{\delta _{0}}. \end{aligned}$$

We also know \(h_{\delta }\rightarrow h\) in \(L^{2}\left( \varOmega _{\delta _{0}-\delta }\right) \) if \(\delta \rightarrow 0\) and, in particular, \(h_{\delta }\rightarrow h\) strongly in \(L^{2}\left( \varOmega \right) \) if \(\delta \rightarrow 0.\) These facts clearly ensure \(h_{\delta }\in X_{0}\left( \delta _{0}\right) .\) We use Theorem 1.1 from [17] to write

$$\begin{aligned} B_{0}\left( h_{\delta },h_{\delta }\right) =\int _{\varOmega _{\delta _{0}}} \int _{\varOmega _{\delta _{0}}}k_{\delta _{0}}\left( \left| x^{\prime }-x\right| \right) \frac{\left( h_{\delta }^{\prime }-h_{\delta }\right) ^{2}}{\left| x^{\prime }-x\right| ^{2}}\hbox {d}x^{\prime }\hbox {d}x=\sum _{k}h_{\delta k}^{2}\gamma _{k}^{nl}\left( \delta _{0}\right) \end{aligned}$$
(44)

where \(h_{\delta k}=\left( h_{\delta },w_{\delta _{0}}^{\left( k\right) }\right) _{L^{2}\left( \varOmega \right) \times L^{2}\left( \varOmega \right) }.\) If we take into account the limit

$$\begin{aligned} \lim _{\delta \rightarrow 0}h_{\delta k}=\lim _{\delta \rightarrow 0}\left( h_{\delta },w_{\delta _{0}}^{\left( k\right) }\right) _{L^{2}\left( \varOmega \right) \times L^{2}\left( \varOmega \right) }=\left( h,w_{\delta _{0} }^{\left( k\right) }\right) _{L^{2}\left( \varOmega \right) \times L^{2}\left( \varOmega \right) }\doteq h_{k}, \end{aligned}$$

the discussion from above, (42)–(44), gives rise to the inequality

$$\begin{aligned} r\ge \sum _{k}h_{\delta k}^{2}\gamma _{k}^{nl}\left( \delta _{0}\right) . \end{aligned}$$

If we pass to the limit, we get

$$\begin{aligned} r\ge \lim _{\delta \rightarrow 0}\sum _{k}h_{\delta k}^{2}\gamma _{k}^{nl}\left( \delta _{0}\right) \ge \sum _{k}h_{k}^{2}\gamma _{k}^{nl}\left( \delta _{0}\right) , \end{aligned}$$

where \(h_{k}=\left( h,w_{\delta _{0}}^{\left( k\right) }\right) _{L^{2}\left( \varOmega \right) \times L^{2}\left( \varOmega \right) }.\) We also recall the fact that \(\left( w_{\delta _{0}}^{\left( k\right) }\right) _{k}\) is an orthonormal basis in \(L^{2}\left( \varOmega \right) \) so that \(\left\| h\right\| _{L^{2}\left( \varOmega \right) }^{2}=\sum _{k}h_{k} ^{2}.\)

We shall need this result (see [41]):

Proposition B.1

Let \(\ell ^{2}\) be the set of sequences \( \left( u_{n}\right) _{n}\) such that \(\sum u_{n}^{2}<\infty \ \)and consider \( \left( \rho _{n}\right) _{n}\) to be a sequence of positive numbers such that \( \lim _{n\rightarrow +\infty }\rho _{n}=+\infty .\) Let V be the space of sequences \(\left( u_{n}\right) _{n}\) such that \(\sum _{n}\rho _{n}\left| u_{n}\right| ^{2}<\infty \, \)and assume the space V is equipped with the scalar product \(\left( \left( u_{n}\right) ,\left( v_{n}\right) \right) =\sum \rho _{n}u_{n}v_{n}.\) Then, V is a Hilbert space and \(V\subset \ell ^{2}\) with compact injection.

Proposition B.2

The set \({\mathcal {H}}_{r}\left( \delta _{0}\right) \) is precompact in \( L^{2}\left( \varOmega \right) .\)

Proof

Let \(\left( h_{j}\right) _{j}\subset {\mathcal {H}}_{r}\left( \delta _{0}\right) \) be any sequence. Then, for any j

$$\begin{aligned} r\ge \sum _{k}h_{jk}^{2}\gamma _{k}^{nl}\left( \delta _{0}\right) . \end{aligned}$$

This estimate and Proposition B.1 guarantees \(\left\{ \left( h_{jk}\right) _{k}\right\} _{j}\) converges in \(\ell ^{2}\) if \(j\rightarrow +\infty ,\) to a sequence \(\left( \widetilde{h}_{k}\right) _{k};\) in this way, if \(\widetilde{h}\) is the function from \(L^{2}\left( \varOmega \right) \) defined by means of the sequence \(\left( \widetilde{h}_{k}\right) _{k}\) (in the basis \(\left( w_{\delta _{0}}^{\left( k\right) }\right) _{k},\,\ \widetilde{h} _{k}=\left( \widetilde{h},\left( w_{\delta _{0}}^{\left( k\right) }\right) _{k}\right) )\), then we can claim

$$\begin{aligned} h_{j}\rightarrow \widetilde{h}\text { strongly in }L^{2}\left( \varOmega \right) . \end{aligned}$$

Finally, since \(\left( h_{j}\right) _{j}\) is uniformly bounded in \( L^{\infty }\), we know there is a function \(h\in L^{\infty }\left( \varOmega \right) \) such that \(h_{j}\rightharpoonup h\) weak\(-*\) in \(L^{\infty }\left( \varOmega \right) .\) Hence \(\widetilde{h}=h,\) and consequently \(h\in {\mathcal {H}} _{r}\left( \delta _{0}\right) .\) \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrés, F., Muñoz, J. On the Convergence of a Class of Nonlocal Elliptic Equations and Related Optimal Design Problems. J Optim Theory Appl 172, 33–55 (2017). https://doi.org/10.1007/s10957-016-1021-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-016-1021-z

Keywords

Mathematics Subject Classification

Navigation