Skip to main content
Log in

Unified Duality Theory for Constrained Extremum Problems. Part I: Image Space Analysis

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This paper is concerned with a unified duality theory for a constrained extremum problem. Following along with the image space analysis, a unified duality scheme for a constrained extremum problem is proposed by virtue of the class of regular weak separation functions in the image space. Some equivalent characterizations of the zero duality property are obtained under an appropriate assumption. Moreover, some necessary and sufficient conditions for the zero duality property are also established in terms of the perturbation function. In the accompanying paper, the Lagrange-type duality, Wolfe duality and Mond–Weir duality will be discussed as special duality schemes in a unified interpretation. Simultaneously, three practical classes of regular weak separation functions will be also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Castellani, G., Giannessi, F.: Decomposition of mathematical programs by means of theorems of alternative for linear and nonlinear systems. In: Proc. Ninth Internat. Math. Programming Sympos., Budapest. Survey of Mathematical Programming, pp. 423–439. North-Holland, Amsterdam (1979)

    Google Scholar 

  2. Giannessi, F.: Theorems of the alternative and optimality conditions. J. Optim. Theory Appl. 42, 331–365 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  3. Li, J., Feng, S.Q., Zhang, Z.: A unified approach for constrained extremum problems: Image space analysis. J. Optim. Theory Appl. 159, 69–92 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  4. Giannessi, F.: Constrained Optimization and Image Space Analysis, vol. 1: Separation of Sets and Optimality Conditions. Springer, New York (2005)

    Google Scholar 

  5. Giannessi, F.: Theorems of the alternative for multifunctions with applications to optimization: gengeral results. J. Optim. Theory Appl. 55, 233–256 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  6. Rubinov, A.M., Uderzo, A.: On global optimality conditions via separation functions. J. Optim. Theory Appl. 109, 345–370 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Li, S.J., Xu, Y.D., Zhu, S.K.: Nonlinear separation approach to constrained extremum problems. J. Optim. Theory Appl. 154, 842–856 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. Luo, H.Z., Mastroeni, G., Wu, H.X.: Separation approach for augmented Lagrangians in constrained nonconvex optimization. J. Optim. Theory Appl. 144, 275–290 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Luo, H.Z., Wu, H.X., Liu, J.Z.: Some results on augmented Lagrangians in constrained global optimization via image space analysis. J. Optim. Theory Appl. 159, 360–385 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  10. Tardella, F.: On the image of a constrained extremum problem and some applications to the existence of a minimum. J. Optim. Theory Appl. 60, 93–104 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  11. Giannessi, F., Mastroeni, G.: Separation of sets and Wolfe duality. J. Glob. Optim. 42, 401–412 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Mastroeni, G.: Some applications of the image space analysis to the duality theory for constrained extremum problems. J. Glob. Optim. 46, 603–614 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  13. Giannessi, F.: On the theory of Lagrangian duality. Optim. Lett. 1, 9–20 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Giannessi, F., Mastroeni, G., Yao, J.C.: On maximum and variational principles via image space analysis. Positivity 16, 405–427 (2012)

    Article  MathSciNet  Google Scholar 

  15. Pappalardo, M.: Image space approach to penalty methods. J. Optim. Theory Appl. 64, 141–152 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  16. Mastroeni, G.: Nonlinear separation in the image space with applications to penalty methods. Appl. Anal. 91, 1901–1914 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  17. Mastroeni, G., Pappalardo, M., Yen, N.D.: Image of a parametric optimization problem and continuity of the perturbation function. J. Optim. Theory Appl. 81, 193–202 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  18. Dien, P.H., Mastroeni, G., Pappalardo, M., Quang, P.H.: Regularity conditions for constrained extremum problems via image space. J. Optim. Theory Appl. 80, 19–37 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  19. Giannessi, F., Mastroeni, G., Pellegrini, L.: On the theory of vector optimization and variational inequalities image space analysis and separation. In: Giannessi, F. (ed.) Vector Variational Inequalities and Vector Equilibria, Mathematical Theories, pp. 153–215. Kluwer Academic, Dordrecht (2000)

    Chapter  Google Scholar 

  20. Mastroeni, G.: On the image space analysis for vector quasi-equilibrium problems with a variable ordering relation. J. Glob. Optim. 53, 203–214 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  21. Mastroeni, G.: Optimality conditions and image space analysis for vector optimization problems. In: Ansari, Q.H., Yao, J.-C. (eds.) Recent Developments in Vector Optimization, Vector Optimization, vol. 1, pp. 169–220. Springer, Dordrecht (2012)

    Chapter  Google Scholar 

  22. Li, J., Huang, N.J.: Image space analysis for vector variational inequalities with matrix inequality constraints and applications. J. Optim. Theory Appl. 145, 459–477 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  23. Mastroeni, G., Panicucci, B., Passacantando, M., Yao, J.C.: A separation approach to vector quasi-equilibrium problems: saddle point and gap functions. Taiwan. J. Math. 13, 657–673 (2009)

    MATH  MathSciNet  Google Scholar 

  24. Hestenes, M.R.: Multiplier and gradient methods. In: Zadeh, L.A., Neustadt, L.W., Balakrishnan, A.V. (eds.) Computing Methods in Optimization Problems. Academic Press, New York (1969)

    Google Scholar 

  25. Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4, 303–320 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  26. Powell, M.J.D.: A method for nonlinear constraints in minimization problems. In: Fletcher, R. (ed.) Optimization. Academic Press, New York (1972)

    Google Scholar 

  27. Rubinov, A.M., Glover, B.M., Yang, X.Q.: Decreasing functions with applications to penalization. SIAM J. Optim. 10, 289–313 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  28. Yang, X.Q., Huang, X.X.: A nonlinear Lagrangian approach to constrained optimization problems. SIAM J. Optim. 14, 1119–1144 (2001)

    Article  Google Scholar 

  29. Rubinov, A.M., Huang, X.X., Yang, X.Q.: The zero duality gap property and lower semicontinuity of the perturbation function. Math. Oper. Res. 27, 775–791 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  30. Wang, C.Y., Yang, X.Q., Yang, X.M.: Unified nonlinear Lagrangian approach to duality and optimal paths. J. Optim. Theory Appl. 135, 85–100 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  31. Huang, X.X., Yang, X.Q.: A unified augmented Lagrangian approach to duality and exact penalization. Math. Oper. Res. 28, 533–552 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  32. Rockafellar, R.T., Wets, R.J.B.: Variational Analysis. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  33. Rubinov, A.M., Yang, X.Q.: Lagrange-Type Functions in Constrained Non-convex Optimization. Kluwer Academic, Dordrecht (2003)

    Book  MATH  Google Scholar 

  34. Zhu, S.K., Li, S.J.: Unified duality theory for constrained extremum problems. Part II: Special duality schemes. J. Optim. Theory Appl. (2013). doi:10.1007/s10957-013-0467-5

    Google Scholar 

  35. Evtushenko, Y.G., Rubinov, A.M., Zhadan, V.G.: General Lagrange-type functions in constrained global optimization. I. Auxiliary functions and optimality conditions. Optim. Methods Softw. 16, 193–230 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  36. Evtushenko, Y.G., Rubinov, A.M., Zhadan, V.G.: General Lagrange-type functions in constrained global optimization. II. Exact auxiliary functions. Optim. Methods Softw. 16, 231–256 (2001)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are indebted to Professor F. Giannessi for his helpful advice and valuable discussions, especially for providing references [3, 9, 13] and suggestions on the form of the generalized Lagrange function (5). They would also like to express their gratitude to two anonymous referees for their valuable comments and suggestions on the proof of Lemma 3.1. This research was supported by the National Natural Science Foundation of China (Grant: 11171362) and the Basic and Advanced Research Project of CQCSTC (Grant: cstc2013jcyjA00003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, S.K., Li, S.J. Unified Duality Theory for Constrained Extremum Problems. Part I: Image Space Analysis. J Optim Theory Appl 161, 738–762 (2014). https://doi.org/10.1007/s10957-013-0468-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-013-0468-4

Keywords

Navigation