Feedback Control Design for Systems with x-Discontinuous Right-Hand Side

  • V. I. Korobov
  • Y. V. Korotyayeva
Open Access


The problem of the admissible feedback synthesis for nonlinear systems with discontinuous right-hand side is considered. Sufficient conditions for solvability of this problem are proved. The neighborhood of the origin is broken in a finite number of domains G 1,G 2,…,G k . In each G j a control system \(\dot{x}=f_{j}(x,u)\) is given. The problem of the admissible feedback synthesis is completely studied for control systems of the form \(\dot{x}=a_{j}(x)+\gamma_{j}(x,u) b_{j}(x)\), where \(u\in \Omega_{j} \subset \Bbb{R}\) for xG j . The controllability function method is used to construct the feedback control.


Control system x-discontinuous right-hand side Feedback Synthesis problem Pass point 


  1. 1.
    Boltjanskii, V.G., Gamkrelidze, R.V., Mischenko, E.F., Pontryagin, L.S.: Mathematical Theory of Optimal Processes. Nauka, Moscow (1961) Google Scholar
  2. 2.
    Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957) MATHGoogle Scholar
  3. 3.
    Korobov, V.I., Sklyar, G.M.: Optimal speed and power moment problem. Mat. Sb. 134(176)2(10), 186–206 (1987) Google Scholar
  4. 4.
    Korobov, V.I., Sklyar, G.M.: Time-optimal control and the trigonometric moment problem. Math. USSR, Izv., 53(4), 868–885 (1989) MathSciNetGoogle Scholar
  5. 5.
    Boltjanskii, V.: Mathematical Methods of Optimal Control, 2nd edn., rev. and suppl. (1969) Google Scholar
  6. 6.
    Kurzhanski, A.B.: On synthesis of systems with impulse controls. Mechatronics Autom. Control 4, 2–12 (2006) Google Scholar
  7. 7.
    Daryin, A.N., Kurzhanski, A.B.: Generalized functions of high order as feedback controls. Differ. Uravn. 43(11), 1443–1453 (2007) MathSciNetGoogle Scholar
  8. 8.
    Korobov, V.I.: A general approach to the solution of a problem of restricted controls synthesis in a controllability problem. Mat. Sb. 109(4), 582–606 (1979) (Russian, English translation) MathSciNetGoogle Scholar
  9. 9.
    Korobov, V.I.: Solution of a synthesis problem using a controllability function. Dokl. Akad. Nauk SSSR 248(5), 1051–1055 (1979) (Russian, English translation) MathSciNetGoogle Scholar
  10. 10.
    Korobov, V.I.: Solution of a synthesis problem in differential games using controllability function. Dokl. Akad. Nauk SSSR 266(2), 269–273 (1982) (Russian, English translation) MathSciNetGoogle Scholar
  11. 11.
    Korobov, V.I., Sklyar, G.M.: The solution of synthesis problem using a controllability functional in infinite-dimensional spaces. Dokl. Akad. Nauk Ukr. SSR, Ser. A 5, 11–14 (1983) (Russian) MathSciNetGoogle Scholar
  12. 12.
    Korobov, V.I., Gavrilyako, V.M., Sklyar, G.M.: Synthesis of restricted control of dynamic systems in the entire space with the help of a controllability function. Avtom. Telemeh. 11, 30–36 (1986) (Russian, English translation) MathSciNetGoogle Scholar
  13. 13.
    Korobov, V.I.: Solution of a synthesis problem for controllable processes with perturbations with the help of a controllability function. Differ. Uravn. 23(2), 236–243 (1987) (Russian, English translation) MathSciNetMATHGoogle Scholar
  14. 14.
    Korobov, V.I., Sklyar, G.M.: Methods for constructing of positional controls and an admissible maximum principle. Differ. Uravn. 26(11), 1914–1924 (1990) (Russian, English translation) MathSciNetGoogle Scholar
  15. 15.
    Korobov, V.I., Sklyar, G.M., Skoryk, V.A.: Solution of the synthesis problem in Hilbert spaces. In: Pros. CD of the 14th Intern. Symposium of Mathematical Theory of Networks and Systems, Perpignan (2000) Google Scholar
  16. 16.
    Korobov, V.I.: Controllability Function Method. Monograph., M. (2007) (Russian) Google Scholar
  17. 17.
    Brockett, R.W.: Lie algebras and Lie groups in control theory. In: Geom. Meth. Syst. Theory. Dordrecht, Boston, pp. 43–82. (1973) Google Scholar
  18. 18.
    Respondek, W.: Linearization, feedback and Lie brackets. Sci. Pap. Inst. Tech. Cybern. Techn. University Wroclaw, Conf. 29(70), 131–166 (1985) Google Scholar
  19. 19.
    Nijmeijer, H., Van der Schaft: Nonlinear Dynamical Control Systems. Springer, New York (1990) MATHGoogle Scholar
  20. 20.
    Korobova, E.V., Sklyar, G.M.: Constructive method for mapping nonlinear systems onto linear systems. Teor. Funkc. Funkc. Anal. Prilozh. 55(1), 68–74 (1991) Engl. Transl. J. Soviet Math. 59(1) 631–635 (1992) Google Scholar
  21. 21.
    Korobov, V.I., Skoryk, V.A.: Positional synthesis of the bounded inertial systems with one-dimensional control. Differ. Uravn. 38(3), 319–331 (2002) MathSciNetGoogle Scholar
  22. 22.
    Roxin, E.: On finite stability in control systems. Pendiconti del Circolo Matematico di Palermo 3(3), 273–282 (1966) MathSciNetCrossRefGoogle Scholar
  23. 23.
    Filippov, A.F.: Differential equations with discontinuous right-hand side. Mat. Sb. 51(93), 99–128 (1960) MathSciNetGoogle Scholar
  24. 24.
    Levant, A.: Homogeneous quasi-continuous sliding mode control. In: Edwards, C., Colet, E.F., Fridman, L. (eds.) Advances of Variable Structure and Sliding Mode Control, pp. 143–168. Springer, Berlin (2006) CrossRefGoogle Scholar
  25. 25.
    Hezinger, T.A.: The theory of hybrid systems. In: Proceedings of 11 th Annual Symposium on Logics in Computer Science, pp. 278–292. IEEE Computer Society, Los Alamitos (1996) CrossRefGoogle Scholar
  26. 26.
    Goebel, R., Sanfelice, R.-G., Teel, A.-R.: Hybrid dynamical systems. IEEE Control Syst. Mag. 29(2), 28–93 (2009) MathSciNetCrossRefGoogle Scholar
  27. 27.
    Liberzon, D.: Swithing in Systems and Control. Birkhäuser, Boston (2003) Google Scholar
  28. 28.
    Moulay, E., Perruquetti, W.: Finite time stability of differential inclusions. IMA J. Math. Control Inf. 22, 465–475 (2005) MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Levant, A.: Homogeneity approach to high-order sliding mode design. Automatica 41, 823–830 (2005) MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Korobov, V.I., Gavrilyako, V.M.: The use of differential inequalities in the solution of a synthesis problem by the controllability function method. Vestnik Khar‘kov Univ. 277, 7–13 (1985) (Russian) MathSciNetGoogle Scholar
  31. 31.
    Polyakov, A., Poznyak, A.: Lyapunov function design for finite-time convergence analysis of twisting and super-twisting second order sliding mode controllers. Automatica 45, 444–418 (2009) MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Boltjanskii, V.G.: The maximum principle for variable structure systems. Int. J. Control 77, 1445–1451 (2004) CrossRefGoogle Scholar
  33. 33.
    Boltjanskii, V.G.: The maximum principle for systems with discontinuous right hand. In: Proceeding Intelligent Systems and Control, vol. 446, pp. 384–387. Springer, Berlin (2004) Google Scholar
  34. 34.
    Dubovitski, A.Ya., Milutin, A.A.: Necessary conditions for a weak extremum in problems of optimal control with mixed constraints. Zh. Vychisl. Mat. Mat. Fiz. 8(4), 725–779 (1968) Google Scholar
  35. 35.
    Girsanov, I.V.: Lectures on Mathematical Theory of Extremum Problems. Moscow State University, Moscow (1970) Google Scholar
  36. 36.
    Sklyar, G.M., Sklyar, K.V., Ignatovich, S.Y.: On the extension of the Korobov’s class of linearizable triangular systems by nonlinear control systems of the class C 1. Syst. Control Lett. 54, 1097–1108 (2005) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  1. 1.University of SzczecinSzczecinPoland
  2. 2.Karazin National UniversityKharkovUkraine

Personalised recommendations