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Abstract The problem of the admissible feedback synthesis for nonlinear systems
with discontinuous right-hand side is considered. Sufficient conditions for solvability
of this problem are proved. The neighborhood of the origin is broken in a finite num-
ber of domains G1,G2, . . . ,Gk . In each Gj a control system ẋ = fj (x,u) is given.
The problem of the admissible feedback synthesis is completely studied for control
systems of the form ẋ = aj (x) + γj (x,u)bj (x), where u ∈ �j ⊂ R for x ∈ Gj . The
controllability function method is used to construct the feedback control.

Keywords Control system · x-discontinuous right-hand side · Feedback · Synthesis
problem · Pass point

1 Introduction

The optimal synthesis problem is one of central problems of the mathematical control
theory. The problem consists in constructing a control of the form u = u(x) satisfy-
ing the given constraints, such that the minimum (maximum) of a certain functional
be reached on trajectories of the closed system. Many papers and monographs are
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devoted to optimal synthesis problems, beginning from [1, 2]. In particular, the time
optimal control problem consists in constructing of a control which transfers an arbi-
trary point to the given one in minimal time. The analytic solution of the linear time
optimal problem, by using the moment min-problem, is given in [3, 4].

Many works are devoted to the method of dynamic programming, beginning from
investigations of R. Bellman, R. Isaacs, G. Leitmann. The investigation of the opti-
mal synthesis problem, based on the dynamic programming method, is given in [5].
A. Kurzhanski considers the feedback control design in systems allowing pulse ac-
tions of finite order [6]. The approach of dynamic programming is exploited to solve
feedback pulse control problems [7].

We consider a nonlinear system of the form

ẋ = f (x,u), x ∈ R
n, u ∈ R, f (0,0) = 0, (1)

with the constraint on a control u ∈ � ⊂ R (0 ∈ int�). Here f (x,u) is an arbitrary
function from R

n+1 to R
n. The problem consists in constructing a control in the

form u = u(x), satisfying the given constraints, such that the trajectory of the system
ẋ = f (x,u(x)), starting at an arbitrary point x0 from a certain neighborhood of the
origin, ends in zero at the moment of time T (x0) < ∞.

The statement of this problem is justified by the following: in many applied prob-
lems, it is sufficient to find the feedback control satisfying the given constraints. This
control is required to be smooth, for example. Besides, the control must guarantee the
time finiteness of movement. For example, when astronauts return to the Earth, ini-
tial conditions can be different. It is important to land in a finite time using a simple
enough control. However, it is not necessary to minimize the landing time. Some-
times it is impossible to construct the optimal control in a real-time mode. In some
games each gamer should analyze some positions in a limited time and make the
admissible move. This move is not necessarily the best one.

The controllability function method (based on the idea of Lyapunov function) was
suggested in 1979 for solving the admissible feedback synthesis problem for systems
with smooth right-hand sides [8–10].

Several methods for constructing the controllability function and the feedback
control have been proposed: for linear systems both in finite and infinite dimensional
spaces [11, 12], for nonlinear systems with smooth right-hand sides using the first ap-
proximation, for control systems with disturbances [13–16]. The feedback synthesis
problem was investigated for the class of nonlinear systems using mapping to lin-
ear systems ([17–20] and other works). This problem was considered also under the
assumption that there exist constraints on the derivatives of the control [21].

Conditions for the origin (point of rest) to be uniformly, finitely, strongly stable
or to be quasi-finitely, weakly, stable in terms of Lyapunov function are given by
E. Roxin [22]. It is also noted that “no continuity is required for the Lyapunov func-
tion, and this makes it difficult to characterize the based conditions from the theorem
by one and the same Lyapunov function”. The controllability function method can
be extended to the case where the origin is not a stationary point. Then the synthe-
sis is unstable, because, after getting to the origin, the trajectory does not stay at the
origin and even leaves the neighborhood and afterwards gets back to the origin in
a finite time. The controllability function method allows one to construct analytical
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(even smooth) feedback control. In the optimal time control problem, the time of
movement coincides with the controllability function. In this case, the controllability
function design for linear systems is based on the moment min-problem.

The idea of controllability function design is based on the generalization of the
nest method [16]. This method consists in constructing an infinite sequence of do-
mains Bk, k = 1,2, . . . , Bk+1 ⊂ Bk,

⋂
k Bk = 0. The boundary of each Bk is the

level surface of Vk(x) (Vk(x) is the Lyapunov function). In Qk = Bk/Bk+1 a con-
trol uk(x) is chosen in accordance with Vk(x). The control design is determined by
convergence to infinity of stability power of the system ẋ = f (x,uk(x)) as k → ∞.

Thus, the trajectory gets to the origin in a finite time.
Our paper deals with the feedback synthesis problem in the statement, which has

not been investigated before. A neighborhood of the origin is broken into a finite
number of domains. In each domain a certain control system is given. This problem
can be interpreted as the admissible synthesis problem for control systems with x-
discontinuous right-hand sides.

Let the surfaces {�i}mi=1 break the neighborhood of the origin of R
n into a finite

number of open sets {Gj }kj=1. In each set Gj a control system

ẋ = fj (x,u), u ∈ �j ⊂ R, 0 ∈ int�j,

is given. Besides, suppose that fj (0,0) = 0, if 0 ∈ Gj .

These systems describe a transfer of a certain object from one medium to another.
In the case of pendulum (Example 5.2) it means the presence of a magnetic field
in one of the domains Gj or the appearance of a resisting force, an elastic force, a
frictional force, etc.

Different classes of dynamical systems, with discontinuous right-hand sides and
different statements of problems, were considered beginning from [23]. Modern ap-
proaches treat the class of differential equations, where the right-hand side is dis-
continuous on its variables, as differential inclusions. This class of systems includes
as a subclass the so-called variable structure systems [24]. Hybrid systems are de-
fined as dynamical systems, whose state has two components: one that evolves in a
continuous set such as R

n (according to a differential equation), and another one that
evolves in a discrete set such as N (according to some transition logic-based rule) [25,
26]. The book [27] presents theoretical developments in the field of stability analysis
and control synthesis of systems, that combine continuous dynamics with switching
events (switching systems).

The problem of feedback control synthesis for differential inclusions was consid-
ered in [10, 13, 16]. This problem is closely connected with the finite-time stability
problem, which is investigated up to date, for example, in [28] (and for the case of
uncertain control systems in [29]). In fact, the authors of [28] “rediscovered”, inde-
pendently each other the known result from [30].

In [31] a method of the Lyapunov function design, which allows one to estimate
the convergence time, is presented for dynamics given by an ordinary differential
equation with a discontinuous right-hand side.

The control systems studied in this paper do not belong to any class described
above. We do not use properties of differential inclusions, since we assume that the
trajectory of the closed system be unique.
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In the present paper, a sufficient condition for solvability of the local feedback
synthesis problem for the system

ẋ = f (x,u), f (x,u) = fj (x,u), x ∈ Gj, j = 1,2, . . . , k,

with an initial condition x(0) = x0, x0 ∈ Q (Q is a certain neighborhood of the ori-
gin) is proved by use of the controllability function method. In addition to the suf-
ficient condition for solvability of admissible feedback synthesis problem a way of
control design for the systems with x-discontinuous right-hand side of a special form
is offered.

Let emphasize the importance of giving a well-defined concept for the solution
of the system ẋ = f (x,u(x)), x(0) = x0, where f (x,u(x)) = fj (x,uj (x)), x ∈ Gj,

j = 1,2, . . . , k, at the boundary of domains Gj . The feedback control is chosen, such
that the corresponding trajectory cannot slide along surfaces �i. Moreover, this tra-
jectory intersects �i at the moments of time τ1 < · · · < τp , p < ∞, outside any closed
ball of a sufficiently small radius. For t from intervals (τi, τi+1), i = 1, . . . , p−1, the
trajectory x(t) belongs to a certain domain Gj . This condition together with the con-
dition of the existence of controllability function, provides getting of the trajectory of
the closed system to the origin in a finite time.

Mayer and Lagrange optimization problems for controlled variable structure sys-
tems are investigated in [32].

V. Boltyanski considers control systems with discontinuous right-hand sides
in [33]. He focuses on the optimal synthesis problem. The maximum principle for
Mayer and Lagrange problems is formulated for determining of the program con-
trol u = u(t). In this paper we consider a more common case comparing with [33]:
points of the boundaries of Gj may belong to the intersection of a finite number of
(n−1)-dimensional smooth surfaces.

The paper is organized as follows. In Sect. 2, preliminary notations and results are
given, and solutions of control systems with x-discontinuous right-hand sides are de-
fined. The main result (a sufficient condition for solvability of the feedback synthesis
problem) and a brief description of the essence of the controllability function method
are provided in Sect. 3. Further, in Sect. 4, the feedback synthesis problem for control
systems of the form ẋ = aj (x) + γj (x,u)bj (x), where u ∈ �j ⊂ R for x ∈ Gj, is
completely studied. In Sect. 5, the obtained results are illustrated by examples.

2 Preliminary Notations and Results

Let Q be a closed neighborhood of the origin (a closure of an open set, 0 ∈ int Q).
Let ε be an arbitrary positive number. Denote by Sε a closed ball of radius ε > 0
(Sε = {x ∈ Rn : ‖x‖ ≤ ε}) such that Sε belongs to Q.

For the description of {Gj }kj=1, let us take m functions {ψi(x)}mi=1, having contin-
uous partial derivatives of the first order. Each function ψi(x) defines two domains

ψ+
i = {x ∈ R

n : ψi(x) > 0}, ψ−
i = {x ∈ R

n : ψi(x) < 0}
and a surface �i = {x ∈ R

n : ψi(x) = 0}. Assume that �ψi(x) �= 0 at the points of
�i. Denote by I = {1, . . . ,m}, J = {1, . . . , k}.



498 J Optim Theory Appl (2011) 149: 494–512

Call the set � = ⋃m
i=1 �i a boundary. Assume that the neighborhood of the origin

be broken by � in a finite number of disjoint domains G1,G2, . . . ,Gk. Refer to the
point x ∈ � as a boundary point. Denote by Ix a set of indexes of functions ψi :
ψi(x) = 0, and by νi, i ∈ Ix, a unit normal at the point x ∈ �. Any point x ∈ � is
a common boundary point of Gj, j ∈ Jx. Assume that normals at any point x ∈ �

be linearly independent, νi(x) = ± �ψi(x)
‖�ψi(x)‖ . The orientation of normals is defined

below.
Hence, either any point x ∈ Q belongs to the boundary x ∈ �; i.e., there exists i0

such that ψi0(x) = 0, or x is an inner point of a certain domain Gj ; i.e., for i ∈ I

inequalities ψi(x) �= 0 are true. Each function {ϕi(x)}mi=1 does not change the sign in
any domain Gj .

Let Kx be a cone with the apex in zero, formed by normals at the point x ∈ �,

i.e. Kx = {ν ∈ R
n : ν = ∑

i∈Ix
λiνi(x), λi > 0}. Denote by K∗

x an adjoint cone to

the cone Kx , i.e. K∗
x = {h ∈ R

n : (h, νi(x)) ≥ 0, i ∈ Ix}. Then
◦

K∗
x = {h ∈ R

n :
(h, νi(x)) > 0, i ∈ Ix} is an interior of the cone K∗

x ,
◦

K∗
x �= ∅.

Consider the control process described by (1), where

f (x,u) = fj (x,u), x ∈ Gj, fj (x,u) = (f1j (x,u), . . . , fnj (x,u))∗,

u ∈ �j ⊂ R.

Henceforward, we assume that suitable conditions be true.

Condition A Each vector-function fj (x,u) is defined in the domain Vj × �j, where
Vj is a certain neighborhood of Gj (Vj is an open set, Gj ⊂ Vj ). Suppose also that
fj (x,u) satisfies the Lipschitz condition in the domain {(x,u) : x ∈ Vj ,0 < ρ1 ≤
‖x‖ ≤ ρ2, u ∈ �j }, i.e.

‖fj (x
′, u′) − fj (x

′′, u′′)‖ ≤ L1(ρ1, ρ2)(‖x′′ − x′‖ + |u′′ − u′|). (2)

Condition B Let functions uj (x), x ∈ Vj , uj (x) ∈ �j exist, such that:
(B1) uj (x) satisfies the Lipschitz condition in the closed domain

Kj(ρ1, ρ2) = {x : x ∈ Vj ,0 < ρ1 ≤ ‖x‖ ≤ ρ2};
i.e.,

|uj (x
′) − uj (x

′′)| ≤ L2(ρ1, ρ2)‖x′′ − x′‖ ∀x′, x′′ ∈ Kj(ρ1, ρ2); (3)

(B2) there exists the orientation of normals νi, i ∈ Ix, at the point x ∈ � (the
common boundary point of Gj, j ∈ Jx ), such that

fj (x,uj (x)) ∈
◦

K∗
x , j ∈ Jx. (4)

Define the function u(x) = uj (x) in each domain Gj, j ∈ J. Further we define
the solution of system

ẋ = f (x,u(x)), (5)
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with an initial condition x(0) = x0, x0 ∈ Q/Sε, and prove, that the trajectory cannot
slide along surfaces �i due to condition B2.

Lemma 2.1 Consider the control process given by (1), where

f (x,u) = fj (x,u), x ∈ Gj, u ∈ �j ⊂ R.

Let conditions A and B be satisfied. Then, there exists a unique trajectory of system
(5) defined on some time segment [0, τ ]. The trajectory starts at an arbitrary point
x0 ∈ (Q/Sε)

⋂
Gj for j ∈ J, and x(t) ∈ Gj/Sε for 0 < t ≤ τ.

Proof If x0 does not belong to the boundary, x0 ∈ Gj for some j ∈ J, then the in-
equality

‖fj (x
′, u′

j (x
′)) − fj (x

′′, u′′
j (x

′′))‖ ≤ L1(ε,R)(1 + L2(ε,R))‖x′′ − x′‖ (6)

holds for points x′, x′′ ∈ Kj(ε,R), 0 < ε < R, R being a certain positive number.
Therefore, a unique solution of the Cauchy problem

ẋ = fj (x,uj (x)), x(0) = x0,

exists on some time interval 0 ≤ t < τ, τ > 0 : x(t) ∈ Gj for some j, j ∈ J.

Let now the point x0 be a boundary one: x0 ∈ (Q/Sε)
⋂

�.

Consider the domain Gj0 = {x ∈ Q : ψi(x) < 0, if νi(x0) = − �ψi(x0)‖�ψi(x0)‖ , and

−ψi(x) < 0, if νi(x0) = �ψi(x0)‖�ψi(x0)‖ , i ∈ Ix0}, j0 ∈ Jx0 . Examine a solution of the
Cauchy problem ẋ = fj0(x,uj0(x)), x(0) = x0, x ∈ Vj0 . This solution can be given
by x(t) = x0 + fj0(x,uj0(x))t + ω(x0, t), where ‖ω(x0,t)‖

t
−→ 0 as t −→ 0.

By definition of the cone
◦

K∗
x of possible directions at the point x0 of the domain

Gj0 [34, 35], there exists the moment of time 0 < τ, such that x0 + t (fj0(x,uj0(x))+
ω(x0,t)

t
) ∈ Gj0 for each 0 < t ≤ τ. Thus, each point of the boundary x0 ∈ (Q/Sε)

⋂
�

corresponds uniquely to the domain Gj0 and the control uj0 . The solution x(t) of the
Cauchy problem

ẋ = fj0(x,uj0(x)), x(0) = x0, x ∈ Vj0

is the trajectory of system (5) with an arbitrary initial condition x(0) = x0, x0 ∈
�

⋂
Q/Sε. A unique solution exists on the time segment [0, τ ], and x(t) ∈ Gj0 for

each 0 < t ≤ τ. �

Definition 2.1 The trajectory x(t) reaches the boundary �, iff there exists the se-
quence of moments of time ts −→ T as s −→ ∞, such that x(ts) ∈ Gj for some j,

and x(ts) −→ x ∈ � as s −→ ∞.

Definition 2.2 Call a point x ∈ � the pass point, iff the trajectory of system (5) with
an arbitrary initial condition x(0) = x0, x0 ∈ Q/Sε, which crosses � at the point x at
some moment of time T > 0, transfers from one domain Gj to another.
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Lemma 2.2 Consider the control process given by (1), where

f (x,u) = fj (x,u), x ∈ Gj, u ∈ �j ⊂ R.

Let conditions A and B be satisfied.
If the trajectory of the system ẋ = f (x,u(x)), starting at an arbitrary point x0 ∈

Q/Sε, reaches the boundary � at some moment of time T > 0, i.e. x = x(T ) ∈ �,

then x is the pass point.

Proof Actually the trajectory of system (5) with an arbitrary initial condition x(0) =
x0, x0 ∈ Q/Sε, can not slide along surfaces �i due to the previous remark. The solu-
tion of the Cauchy problem

ẋ = f (x,u(x)), x(T ) = x, x ∈ �,

is equal to the solution x(t) of the Cauchy problem

ẋ = fj0(x,uj0(x)), x(T ) = x, x ∈ Vj0 , j0 ∈ Jx;
x(t) belongs to the domain Gj0 for each T < t ≤ T + τ for some τ > 0.

Show that there exists 0 < τ ′ ≤ T , such that the trajectory x(t) does not belong to
the domain Gj0 for T − τ ′ ≤ t < T . Assume the converse. Then x(t) is the solution
of the Cauchy problem

ẋ = fj0(x,uj0(x)), x(T ) = x

for T − τ ′ ≤ t < T . Therefore, we obtain that x(T − t) = x(T ) − tfj0(x(T ),

uj0(x(T ))) + ω(x(T ), t) = x + t (−fj0(x,uj0(x)) + ω(x,t)
t

),
‖ω(x(T ),t)‖

t
→ 0 as

t → 0. Under our assumptions x(T − t) ∈ Gj0 for 0 < t ≤ τ ′. This means
that (−fj0(x,uj0(x)), νi(x)) ≥ 0 for each i ∈ Ix. Since x ∈ �, observe, that

fj0(x,uj0(x)) ∈
◦

K∗
x ; i.e., (fj0(x,uj0(x)), νi(x)) > 0, ∀ i ∈ Ix, due to the condition

B2. The contradiction proves that the point x ∈ � is the pass point of the trajectory of
system (5) with an arbitrary initial condition x0 ∈ Q/Sε. �

Assume that the following condition holds.

Condition C Suppose that, for each point x0 ∈ (Q/Sε)
⋂

�, the control uj0(x), x ∈
Vj0 , be such that there exists a time segment [0, τε], where the solution of the Cauchy
problem ẋ = fj0(x,uj0(x)), x(0) = x0, belongs to the domain Gj0/Sε. Specifically,
either x(t) ∈ Gj0/Sε for 0 < t ≤ τε, or x(t) ∈ Sε for some 0 < t ≤ τε.

3 Sufficient Condition for Solvability of Synthesis Problem

Consider the control process

ẋ = f (x,u), f (x,u) = (f1(x,u), . . . , fi(x,u), . . . , fn(x,u))∗,
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with the constraints u ∈ � ⊂ R. Describe the main idea of the controllability func-
tion method from [8]. Assume that the ancillary function  = (x) (controllability
function) exists. The function satisfies the following conditions:

(1) (x) > 0 for x �= 0, (0) = 0;
(2) (x) is continuous everywhere and continuously differentiable everywhere ex-

cept for the origin;
(3) there exists a number c > 0, such that the set

Q = {x ∈ R
n : (x) ≤ c}

is bounded.

Suppose also that there exists the control u = ũ(x,(x)), such that the differential
equation

n∑

i=1

∂

∂xi

fi(x,u(x)) ≤ −β1− 1
α (x), α ≥ 1, β > 0

holds. This means that a movement takes in the direction of decrease of the function
(x). Since the inequality holds we see that the trajectory gets to the origin due to
the control u(x) in a finite time.

If the equality
∑n

i=1
∂
∂xi

fi(x,u(x)) = −1 holds, then (x) = T (x), where T (x)

is the time to get to the origin from x. If

min
u∈�

n∑

i=1

∂

∂xi

fi(x,u) =
n∑

i=1

∂

∂xi

fi(x,u(x)) = −1,

then for ω(x) = −(x) one obtains the Bellman equation

max
u∈�

n∑

i=1

∂ω

∂xi

fi(x,u) = 1.

The choice of the control based on the Bellman equation can be interpreted as the
minimization of the controllability function (x). In the controllability function
method this angle is not necessarily minimal. From the above equation, for α = ∞,

it follows that (x) = V (x) (V (x) being the Lyapunov function). The traditional
Lyapunov function is defined explicitly, while (x) is defined implicitly through the
equation �(,x) = 0. The optimal time of movement for the linear time optimal
problem is also designed implicitly [3].

Definition 3.1 The trajectory x(t) ends in the origin in a finite time, iff there exist
two sequences of numbers εs > 0, εs −→ 0 and ts , ts −→ T , T < ∞ as s −→ ∞,

such that x(ts) ∈ Sεs .

Now formulate and prove a new sufficient condition for the solvability of the syn-
thesis problem.
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Theorem 3.1 Consider the control process described by (1), where f (x,u) =
fj (x,u), x ∈ Gj, fj (x,u) = (f1j (x,u), . . . , fnj (x,u))∗, u ∈ �j ⊂ R. Let condi-
tions A, B, C hold. Define the function u(x) = uj (x) in each domain Gj . Let the
controllability function (x) exist. For x ∈ Gj inequalities

−β1
1− 1

α1 (x) ≤
n∑

i=1

∂

∂xi

fij (x,uj (x)) ≤ −β2
1− 1

α2 (x) (7)

are true for some positive β1, β2, α1, α2. Then, the trajectory of the system ẋ =
f (x,u(x)), starting at an arbitrary point x0 ∈ Q, ends in the origin at the time

(α1/β1)
1
α1 (x0) ≤ T (x0) ≤ (α2/β2)

1
α2 (x0).

Proof Let us show that the trajectory x(t) of system (5) with an arbitrary initial con-
dition x0 ∈ Q gets to the boundary of the ball Sε at the moment of time, satisfying
estimation

(α1/β1)
1
α1 (x0) ≤ T (x0) ≤ (α2/β2)

1
α2 (x0). (8)

Let x0 ∈ Gj for some j. If x0 ∈ Gj, then the solution of system (5) with the initial
condition x0 exists on some time segment [0, τ ], τ > 0, x(t) ∈ Gj/Sε for t ∈ [0, τ ].
If x0 ∈ ∂Gj , then x(t) ∈ Gj0 for 0 < t ≤ τ, τ > 0. Since inequality (7) holds, we
obtain that the trajectory x(t) of system (5) belongs to the domain Q. The solution
continues on some segment [0, τ1], τ1 > τ.

Both cases are possible: either x(τ1) ∈ Sε due to (7) or x(τ1) ∈ �. If x(τ1) belongs
to the boundary �, then the trajectory x(t) for τ1 < t ≤ τ1 + τε belongs to the do-
main Gj1/Sε . Then the solution of system (5) is defined on some maximum segment
[τ1, τ2], τ2 − τ1 ≥ τε, and x(t) ∈ Gj1/Sε for τ1 ≤ t < τ2. Observe that x(τ2) ∈ �,

x(τ2) does not belong to Sε. The trajectory x(t) for t > τ2 belongs to the new do-
main Gj2 etc. Hence, the trajectory x(t) intersects the boundary � in no more than
a countable set of points 0 = τ0 ≤ τ1 < τ2 < · · · . The trajectory is defined for t ≤ T ,

and x(t) does not belong to Sε for t ≤ T . Let us show that the number of moments τi,

for which x(τi) belongs to one of the surfaces of �, is finite. We also establish that the
trajectory x(t) gets to the boundary of Sε at the moment of time T (x0), T (x0) ≥ τp,

satisfying estimation (8).
Let p be an arbitrary natural number. Consider one of time segments [τi, τi+1],

i ∈ {1, . . . , p − 1}. The solution x(t) belongs to the domain Gj for t ∈ (τi, τi+1).

Since condition C holds, we see that the following inequality τi+1 − τi ≥ τε is true.
From inequality (7) it follows that


1
α2 (x(τi+1)) ≤ 

1
α2 (x(τi)) − β2(τi+1 − τi)

α2
, i = 0, . . . , p − 1, (9)


1
α2 (x(t)) ≤ 

1
α2 (x(τi)) − β2(t − τi)

α2
, i = 0, . . . , p − 1, t > τp. (10)

Since (x0) > (x(τ1)) > · · · > (x(τp)), we have


1
α2 (x(τp)) ≤ 

1
α2 (x0) − β2 τp

α2
. (11)
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If τp > (α2/β2)
1
α2 (x0), then the right-hand side of inequality (11) is negative,

but it is impossible because 
1
α2 (x(τp)) ≥ 0.

Observe, that p ≤ (α2/β2)
1
α2 (x0)

τε
, because τi+1 − τi ≥ τε, i = 0, . . . , p − 1.

If x(τp) ∈ Sε, then the necessary result is established. Let x(τp) not belong to Sε,

then from inequality (10) it follows that


1
α2 (x(t)) ≤ 

1
α2 (x0) − β2 t

α2
. (12)

At time t ≤ (α2/β2)
1
α2 (x0) the trajectory x(t) gets to the boundary of the ball

Sε. Otherwise, if t > (α2/β2)
1
α2 (x0), then the right-hand side of inequality (12) is

negative and the left-hand side is positive. There exists a segment [0, T ] such that

x(T ) ∈ Sε, and T ≤ (α2/β2)
1
α2 (x0). It follows that x(T ) ∈ Sε as in [16]: T ≤

(α2/β2)
1
α2 (x0) and limt→T (x0) x(t) = 0. To get the lower estimate for the moment

of time T (x0), by analogy, we can take the inequality


1
α1 (x0) − β1 t

α1
≤ 

1
α1 (x(t)).

Hence, T (x0) ≥ (α1/β1)
1
α1 (x0) because limt→T (x0) (x(t)) = 0. �

Remark 3.1 The requirement of continuous differentiability and even continuity of
the controllability function (x) at the boundary is restrictive enough. However, this
requirement could be avoided.

4 Solving of Synthesis Problem for Control System with Discontinuous
Right-Hand Side

Let some closed neighborhood of the origin Q̂ be broken on a finite number of open
sets Gj, j = 1, . . . , k. Consider the method to solve the synthesis problem, when the
control system of differential equations is given by

ẋ = a(x) + γ (x,u)b(x), (13)

a(x) = aj (x) = (a1j (x), . . . , anj (x))∗, b(x) = bj (x) = (b1j (x), . . . , bnj (x))∗,
γ (x,u) = γj (x,u) for x ∈ Gj . Here the symbol ∗ means transposition. Assume that
functions aij (x), bij (x), i = 1, . . . , n, j = 1, . . . , k be continuously differentiable
n times for x ∈ Vj . γj (x,u) is continuously differentiable with respect to the pair
of variables, γj

′
u
(x,u) ≥ γ0, γ0 > 0, x ∈ Vj , u ∈ �j, j = 1, . . . , k. If 0 ∈ Gj then

aj (0) = 0, γj (0,0) = 0.

The nonlinear system on each domain Gj is given by

ẋ = aj (x) + γj (x,u)bj (x), (14)
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with constraints on the control |u| ≤ dj , dj > 0.

Let system (13) be such that there exists a smooth transformation of variables
z = �(x), �(0) = 0, x ∈ ⋃k

j=1 Vj . In each domain Gj (14) is given by

ż1 = z2, ż2 = z3, . . . , żn−1 = zn, żn = φj (z1, z2, . . . , zn, u). (15)

Denote by Hj and σi , respectively, the images of sets Gj and �i under the mapping
�, Hj = �(Gj ), σi = �(�i).

As in [20], define the transformation of variables �(x) in the following way. Let
the continuously differentiable n+1 times scalar function ϕ(x) = ϕ(x1, x2, . . . , xn)

exist for x ∈ ⋃k
j=1 Vj . Denote by Laϕ = ϕxa, where ϕx = (ϕx1 , . . . , ϕxn). Consider

Lie brackets

ad0
ab = b, ad1

ab = [a, b] = bxa − axb, ad
p
a b = [a, ad

p−1
a b],

p = 1, . . . , n − 1.

Let vectors b(x), ad1
ab(x), . . . , adn−1

a b(x) form the basis in the space R
n for each

x ∈ ⋃k
j=1 Vj , and

ϕxb = 0, ϕxad1
ab = 0, . . . , ϕxadn−2

a b = 0, ϕxadn−1
a b �= 0. (16)

Vectors aj (x) and bj (x), j = 1,2, . . . , k, for x ∈ Vj satisfy

ϕxbj = 0, ϕxad1
aj

bj = 0, . . . , ϕxadn−2
aj

bj = 0, ϕxadn−1
aj

bj �= 0,

and Li
aj

ϕ = Li
am

ϕ, i = 1, . . . , n−1, j,m = 1,2, . . . , k.

In each domain Gj, we take the transformation of variables z = �(x)

z1 = ϕ(x), z2 = Laj
ϕ(x), . . . , zn = Ln−1

aj
ϕ(x). (17)

For every sequence z1, z2, . . . , zn, equalities (17) are assumed to be uniquely solv-
able by x1, x2, . . . , xn. Denote by

φj (z1, z2, . . . , zn, u) = Ln
aj

ϕ(x) + γj (x,u)Lbj
Ln−1

aj
ϕ(x).

Then in each domain Hj system (14) is given by (15).
Suppose there exists a constant c > 0, such that, for LbL

n−1
a ϕ(x) and for x ∈ Vj ,

the inequality

|LbL
n−1
a ϕ(x)| ≥ c (18)

be true.

Remark 4.1 If some additional conditions be true, as in [36], then it is sufficient to
require belonging to the class C1 from functions aj (x), bj (x) to transform system
(14) to system (15), using non-degenerate transformation of variables z = �(x).
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Theorem 4.1 Let the control system of differential equations with discontinuous
right-hand side be given by (13). Conditions (16) and (18) are true. Then, the prob-
lem of the admissible feedback synthesis can be solved in some closed and bounded
neighborhood of the origin.

Proof In each domain Gj, j = 1,2, . . . , k, make transformation of variables (17).
System (14) is given by (15).

Introduce the new control v = φj (z1, z2, . . . , zn, u), z ∈ Hj , j = 1, . . . , k. System
(15) takes form

ẏ = A0y + b0v,

(19)
A0 =

⎛

⎜
⎜
⎝

0 1 . . . 0
. . . . . . . . . . . .

0 0 . . . 1
0 0 . . . 0

⎞

⎟
⎟
⎠ , b0 =

⎛

⎜
⎜
⎝

0
. . .

0
1

⎞

⎟
⎟
⎠ .

The control u satisfies the given constraints: |u| ≤ dj , dj > 0, in the domain Gj .

If x ∈ Gj, then z = �(x) ∈ Hj , Hj ⊂ Q0, where Q0 = �(Q̂) is the closed neigh-
borhood of the origin in the space of variables z. Let the constraints on the control v

be given in the form |v| ≤ d0, d0 > 0. The constant d0 is defined below.
One of the methods of constructing the controllability function, presented in [16],

consists in the following. The function (z) is defined as a unique positive solution
of equation

2a0 = (F ()z, z), (20)

for each z, where F−1() = (
(−1)2n−i−j 2n−i−j+1

(n−i)!(n−j)!(2n−i−j+1)(2n−i−j+2)
)ni,j=1. a0 is a positive

number which satisfies conditions a0 ≤ 2d2
0

fnn
, fnn is the lower right angular element

of the matrix F(1).

The control v is chosen as

v(y) = −1

2
b∗

0F((z))z. (21)

Control (21) solves the problem of the admissible feedback synthesis in the neigh-
borhood Q0 [16], |v| ≤ d0.

Find the control uj (z), j = 1,2, . . . , k, z ∈ Hj , from the equation v(z) = φj (z1,

z2, . . . , zn, u) = Ln
aj

ϕ(�−1(z)) + γj (�
−1(z), uj ) Lbj

Ln−1
aj

ϕ(�−1(z)). Since the

function Ln
aj

ϕ(�−1(z)) is continuous and Ln
aj

ϕ(0) = 0, if 0 ∈ Hj , there exists some

constant c1, such that the inequality |Ln
aj

ϕ(�−1(z))| ≤ c1 holds in some bounded
neighborhood Q1 ⊂ Q0.

Hence, |γj (�
−1(z), u)| ≤ d0+c1

c
. Moreover,

2
d0 + c1

c
≥ |γj (�

−1(z), u) − γj (�
−1(z),0)| = |γj

′
u
(�−1(z), u′)||u| ≥ γ0|u|.
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If γj (�
−1(z),0) = 0 for each z ∈ Q1, then

d0 + c1

c
≥ |γj (�

−1(z), u)| ≥ γ0|u|, |u| ≤ d0 + c1

cγ0
.

Let now c1 and d0 be such, that inequalities 2 d0
γ0 c

≤ d
2 , 2 c1

γ0 c
≤ d

2 , d = mindj ,

j = 1, . . . , k, be true, then the control uj (z) for z ∈ Hj

⋂
Q1 satisfies the given con-

straints: |uj | ≤ dj .

Choose the domain Q1 ⊂ Q0 in the form {z ∈ R
n : (z) ≤ c2(c1)}.

If the point z ∈ ⋃m
i=1 σi (the common boundary point of domains Hj , j ∈ Jz),

then the value of control u(z) can be chosen from one of equalities

v(z) = φj (z1, z2, . . . , zn, uj ), j ∈ Jz.

The trajectory of system (15) is smooth for all z. The trajectory x(t), found from
equalities (17) with right-hand sides zi(t), i = 1, . . . , n, is also smooth for all 0 ≤ t ≤
T (z), where T (z) is the moment of time to get to the origin from an arbitrary point z

of Q1.

The problem of the admissible feedback synthesis is solved in the domain Q =
{x ∈ R

n : (�(x)) ≤ c2(c1)} ⊂ Q̂ in a finite time T (�(x)). The control satisfies the
constraints |u| ≤ dj for x ∈ Gj . �

Remark 4.2 The trajectory x(t) of the system

ẋ = a(x) + γ (x,u(x))b(x),

where a(x) = aj (x), b(x) = bj (x), γ (x,u(x)) = γj (x,uj (x)) for x ∈ Gj, can slide
along surfaces �i, i = 1, . . . ,m.

5 Examples

Example 5.1 In the domain G1 = {(x1, x2) : x1 > 0}, let the system

ẋ1 = x3
1 + x1 + u

3x2
1 + 1

, ẋ2 = u

3x2
1 + 1

, (22)

be given; i.e., a1(x) = (
x3

1+x1
0

)
, b1(x) = ( 1

1

)
,

γ1(x,u) = u

3x2
1+1

, |u| ≤ 1. In the domain G2 = {(x1, x2) : x1 < 0}, let the system

ẋ1 = x3
1 + u, ẋ2 = −x1 + u, (23)

a2(x) = (
x3

1−x1

)
, b2(x) = ( 1

1

)
, γ2(x,u) = u, |u| ≤ 1, be given. Here ψ1(x) = x1.

If the function ϕ(x) is given by ϕ(x1, x2) = x1 − x2, then conditions (16) hold,
i.e. ϕxb1 = 0, ϕxb2 = 0, La1ϕ = La2ϕ = x3

1 + x1. The transformation of variables
y = �(x) is given by

z1 = ϕ(x1, x2) = x1 − x2, z2 = Laϕ(x1, x2) = x3
1 + x1. (24)
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The second equation of (24) defines x1 = h(z2), h(0) = 0, then

x2 = h(z2) − z1.

Here h(z2) = −2·31/3+21/3(9z2+
√

12+81z2
2)2/3

62/3(9z2+
√

12+81z2
2)1/3

.

The domain G1 transforms to the domain H1 = {(z1, z2) : z2 > 0}, the domain G2

transforms to H2 = {(z1, z2) : z2 < 0}. In the domain H1 system (22) is given by

ż1 = z2, ż2 = (3h2(z2) + 1)z2 + u. (25)

In the domain H2 system (23) takes form

ż1 = z2, ż2 = (3h2(z2) + 1)(h3(z2) + u). (26)

Let us introduce the new control

v =
{

(3h2(z2) + 1)z2 + u, z ∈ H1,

(3h2(z2) + 1)(h3(z2) + u), z ∈ H2.

Then systems (25) and (26) take form ż1 = z2, ż2 = v, |v| ≤ d0, where d0 is suffi-
ciently small, the constraints on d0 are described below.

Solve the synthesis problem using the controllability function  = (z). Define
the function (z) for z �= 0 as a unique positive solution of (20). The matrix F()

is given by
( 36

3
12
2

12
2

6


)
. Equation (20) is given by 2a0

4 = 36z2
1 + 24z1z2 + 62z2

2,

a0 ≤ 2d2
0

6 .

Control

v(z) = − 6

2(z1, z2)
z1 − 3

(z1, z2)
z2 (27)

solves the synthesis problem; i.e., it moves any point (z0
1, z

0
2) ∈ R

n to the origin along
the trajectory of the system at the finite time (z0

1, z
0
2) and satisfies the constraints

|v| ≤ d0.

The trajectory can be found as the solution of the Cauchy problem

ż1 = z2, ż2 = − 6z1

2(t)
− 3z2

(t)
, ̇ = −1,

z1(0) = z0
1, z2(0) = z0

2, (0) = (z0
1, z

0
2).

Observe that

z1(t) = (0 − t)2(c1 cosω(t) + c2 sinω(t)),

z2(t) = (0 − t)((2c1 + √
2c2) cosω(t) + (−√

2c1 + 2c2) sinω(t)).
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Here ω(t) = √
2 ln(0 − t),

c1 = 1

22
0

(2z0
1 cos(

√
2 ln0) + √

2(2z0
1 + z0

20) sin(
√

2 ln0)),

c2 = 1√
22

0

(−(2z0
1 + z0

20) cos(
√

2 ln0) + √
2z0

1 sin(
√

2 ln0)).

The control v(z) is given by

v(z1(t), z2(t)) = 3
√

2(c2 cosω(t) − c1 sinω(t)).

The control solving the local feedback synthesis problem is given by

u(x1, x2) = − 6(x1 − x2)

2(x1 − x2, x1 + x3
1)

− 3(x3
1 + x1)

(x1 − x2, x1 + x3
1)

− (3x2
1 + 1)(x3

1 + x1),

for (x1, x2) ∈ G1, and for (x1, x2) ∈ G2:

u(x1, x2) = 1

3x2
1 + 1

(

− 6(x1 − x2)

2(x1 − x2, x1 + x3
1)

− 3(x3
1 + x1)

(x1 − x2, x1 + x3
1)

)

− x3
1 .

On the boundary of domains; i.e., for x1 = 0, the controls are equal.
The trajectory of the given system satisfies the equations

x1(t) − x2(t) = (0 − t)2(c1 cosω(t) + c2 sinω(t)),

x3
1(t) + x1(t) = (0 − t)((2c1 + √

2c2) cosω(t) + (−√
2c1 + 2c2) sinω(t)),

z1(0) = z0
1 = x1(0) − x2(0) = x0

1 − x0
2 ,

z2(0) = z0
2 = x3

1(0) + x1(0) = x0
1

3 + x0
1 .

Control (27) solves the synthesis problem in some neighborhood of the origin Q0.
Between x1 and x2 and z1, z2 dependence (24) exists. The closed neighborhood Q0 in
the space of variables z1, z2 corresponds to the closed neighborhood Q̂ = �−1(Q0)

in the space of variables x1, x2. Let Q0 contained in a ball of radius R0 and the
neighborhood Q̂ contained in a ball of radius R̂. As d0 → 0, R0 → 0 and R̂ → 0.

In the domain H1
⋂

Q0 the control

|u| ≤ |v − (3h2(z2) + 1)z2| ≤ d0 + |(3h2(z2) + 1)z2|.
Let d0 ≤ 1/2. If |z2| ≤ 1/3, then the function (3h2(z2)+1)z2 satisfies the constraints
|(3h2(z2) + 1)z2| ≤ 1/2. In the domain

H1

⋂
{(z1, z2) : |z2| ≤ 1/3}

the control u satisfies the given constraints |u| ≤ 1.
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In H2
⋂

Q0 the control u satisfies |u| = | v−(3h2(z2)+1)h3(z2)

3h2(z2)+1
|:

u ≤ d0 + |(3h2(z2) + 1)h3(z2)|.
If |z2| ≤ 1/3 then |u| ≤ 1.

Let us consider the ellipsoid Q1 = {(z1, z2) : (z1, z2) ≤ c2}. Find a positive
number c2, such that the inclusion Q1 ⊂ {(z1, z2) : |z2| ≤ 1/3} be true. Suppose that

d0 = 1/2, a0 = 2d2
0

6 = 1/12, then c2 = √
12/3 = 2

√
3/3.

The control u(x1, x2) satisfies the given constraints |u| ≤ 1 and moves an arbitrary
point (x0

1 , x0
2) of the neighborhood of the origin

Q = {(x1, x2) : (x1 − x2, x1 + x3
1) ≤ c2}

to zero in the finite time (x0
1 − x0

2 , x0
1 + (x0

1)3).

Example 5.2 Consider the solution of the local synthesis problem for the system
ẋ1 = x2, ẋ2 = − sinx1 + u; |u| ≤ 2, x ∈ G1 = {x ∈ R

2 : x1 > 0}; and ẋ1 = x2, ẋ2 =
a sinx1 + u; |u| ≤ 2, x ∈ G2 = {x ∈ R

2 : x1 < 0}; a ∈ R, |a| ≤ 1. For construction of
the controllability function use one of the methods from [16]. Find the function (x)

from the equation (see [16]) 2
94 − 2x2

2 − 2x1x2 − 3x2
1 = 0. Introduce the new

control

v(x) =
{

− sinx1 + u, x1 > 0,

a sinx1 + u, x1 ≤ 0.

Suppose that −1 ≤ v ≤ 1. Thus, |u| = |v + sinx1| ≤ 2 for x1 > 0, and |u| ≤ 2, if
x1 < 0. The control v(x) = − x1

2(x1,x2)
− 2x2

(x1,x2)
solves the problem of the admissible

Fig. 1 Trajectory, starting at the
point (−1.5,3), a = 0.5
(Example 5.2)
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Fig. 2 Control u(t) in domain
G2 (Example 5.2)

Fig. 3 Control u(t) in domain
G1 (Example 5.2)

feedback synthesis for the system ẋ1 = x2, ẋ2 = v in any neighborhood of the origin
Q0 and satisfies the constraints |v| ≤ 1.

On account of the system, the derivative of the function  (see [16]) is given

by ̇ = − 2x2
1+2x2

22

12x2
1+6x1x2+2x2

22 , − 2
7−√

34
≤ ̇ ≤ − 2

7+√
34

. The time of movement

T (x0
1 , x0

2) from an arbitrary point x0 = (x0
1 , x0

2) to the origin satisfies inequalities

7 − √
34

2
(x0

1 , x0
2) ≤ T (x0

1 , x0
2) ≤ 7 + √

34

2
(x0

1 , x0
2).

Let us denote x3(t) = (x(t)), x3(t) > 0 for t �= 0. Then x(t) = (x1(t), x2(t), x3(t))

is the solution of the system of differential equations ẋ1 = x2, ẋ2 = − x1
x2

3
− 2x2

x3
,
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ẋ3 = − x2
1+x2

2x2
3

6x2
1+3x1x2x3+x2

2x2
3
, with initial conditions x1(0) = x0

1 , x2(0) = x0
2 , x3(0) =

(x0
1 , x0

2). In the domain G1 the programming control solving the synthesis problem

is given by u1(t) = − x1(t)

x2
3 (t)

− 2x2(t)
x3(t)

+ sinx1(t). In the domain G2 the control is given

by u2(t) = − x1(t)

x2
3 (t)

− 2x2(t)
x(t)

− a sinx1(t).

6 Concluding Remarks

The problem of the admissible feedback synthesis for nonlinear systems with x-
discontinuous right-hand side is investigated. This problem has not been considered
before. Sufficient conditions for solvability of this problem are proved in detail. The
proof is based on the controllability function method. The feedback control is chosen,
such that the corresponding trajectory cannot slide along surfaces �i. We do not use
properties of differential inclusions, since we assume that the trajectory of the closed
system be unique. These conditions together with the condition of the existence of
controllability function lead to the trajectory of the closed system to the origin in a
finite time.

The problem of the admissible feedback synthesis is completely studied for control
systems of the form ẋ = aj (x) + γj (x,u)bj (x), where u ∈ �j ⊂ R for x ∈ Gj .

The obtained results are illustrated by examples.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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