Skip to main content
Log in

Replica Symmetry Breaking in Multi-species Sherrington–Kirkpatrick Model

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In the Sherrington–Kirkpatrick (SK) and related mixed p-spin models, there is interest in understanding replica symmetry breaking at low temperatures. For this reason, the so-called AT line proposed by de Almeida and Thouless as a sufficient (and conjecturally necessary) condition for symmetry breaking, has been a frequent object of study in spin glass theory. In this paper, we consider the analogous condition for the multi-species SK model, which concerns the eigenvectors of a Hessian matrix. The analysis is tractable in the two-species case with positive definite variance structure, for which we derive an explicit AT temperature threshold. To our knowledge, this is the first non-asymptotic symmetry breaking condition produced for a multi-species spin glass. As possible evidence that the condition is sharp, we draw further parallel with the classical SK model and show coincidence with a separate temperature inequality guaranteeing uniqueness of the replica symmetric critical point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agliari, E., Barra, A., Galluzzi, A., Guerra, F., Moauro, F.: Multitasking associative networks. Phys. Rev. Lett. 109, 1–5 (2012)

    Article  Google Scholar 

  2. Agliari, E., Barra, A., Guerra, F., Moauro, F., Agliari, E., Barra, A., Guerra, F., Moauro, F.: A thermodynamic perspective of immune capabilities. J. Theor. Biol. 287, 48–63 (2011)

    Article  MATH  Google Scholar 

  3. Aizenman, M., Lebowitz, J.L., Ruelle, D.: Some rigorous results on the Sherrington–Kirkpatrick spin glass model. Commun. Math. Phys. 112(1), 3–20 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Amit, D.J., Gutfreund, H., Sompolinsky, H.: Spin-glass models of neural networks. Phys. Rev. A 32(2), 1007–1018 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  5. Auffinger, A., Chen, W.-K.: On properties of Parisi measures. Probab. Theory Relat. Fields 161(3–4), 817–850 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Auffinger, A., Chen, W.-K.: The Parisi formula has a unique minimizer. Commun. Math. Phys. 335(3), 1429–1444 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Auffinger, A., Chen, W.-K., Zeng, Q.: The SK model is full-step replica symmetry breaking at zero temperature. Preprint, available at arXiv:1703.06872

  8. Barra, A., Agliari, E.: A statistical mechanics approach to autopoietic immune networks. J. Stat Mech. Theory E 2010(07), 1–24 (2010)

    Article  Google Scholar 

  9. Barra, A., Agliari, E.: A statistical mechanics approach to Granovetter theory. Phys. A 391(10), 3017–3026 (2012)

    Article  Google Scholar 

  10. Barra, A., Contucci, P.: Toward a quantitative approach to migrants integration. Europhys. Lett. 89(6), 1–6 (2010)

    Article  Google Scholar 

  11. Barra, A., Contucci, P., Mingione, E., Tantari, D.: Multi-species mean field spin glasses. Rigorous results. Ann. Henri Poincaré 16(3), 691–708 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Barra, A., Galluzzi, A., Pizzoferrato, A., Tantari, D.: Mean field bipartite spin models treated with mechanical techniques. Eur. Phys. J. 87(3), 74 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Barra, A., Genovese, G., Guerra, F.: The replica symmetric approximation of the analogical neural network. J. Stat. Phys. 140(4), 784–796 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Barra, A., Genovese, G., Guerra, F.: Equilibrium statistical mechanics of bipartite spin systems. J. Phys. A 44(24), 245002, 22 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Barra, A., Genovese, G., Guerra, F., Tantari, D.: How glassy are neural networks? J. Stat. Mech. 07, 1–16 (2012)

    Google Scholar 

  16. Barra, A., Guerra, F.: About the ergodic regime in the analogical Hopfield neural networks: moments of the partition function. J. Math. Phys. 49(12), 1–18 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bovier, A., Picco, P. (eds.): Mathematical Aspects of Spin Glasses and Neural Networks. Progress in Probability, vol. 41. Birkhäuser Boston Inc, Boston, MA (1998)

  18. Contucci, P., Gallo, I., Menconi, G.: Phase transitions in social sciences: two-population mean field theory. Int. J. Mod. Phys. B 22(14), 2199–2212 (2008)

    Article  ADS  MATH  Google Scholar 

  19. Contucci, P., Ghirlanda, S.: Modeling society with statistical mechanics: an application to cultural contact and immigration. Qual. Quant. 41(4), 569–578 (2007)

    Article  Google Scholar 

  20. de Almeida, J.R.L., Thouless, D.J.: Stability of the Sherrington–Kirkpatrick solution of a spin glass model. J. Phys. A 11(5), 983–990 (1978)

    Article  ADS  Google Scholar 

  21. Edwards, S.F., Anderson, P.W.: Theory of spin glasses. J. Phys. F 5(5), 965–974 (1975)

    Article  ADS  Google Scholar 

  22. Fedele, M., Contucci, P.: Scaling limits for multi-species statistical mechanics mean-field models. J. Stat. Phys. 144(6), 1186–1205 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Fedele, M., Unguendoli, F.: Rigorous results on the bipartite mean-field model. J. Phys. A 45(38), 385001, 18 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gallo, I., Contucci, P.: Bipartite mean field spin systems. Existence and solution. Math. Phys. Electron. J. 14 (2008), Paper 1, 21

  25. Guerra, F.: Sum, rules for the free energy in the mean field spin glass model. In: Mathematical physics in mathematics and physics (Siena, : vol. 30 of Fields Institute Communications American Mathematical Society. Providence, RI, 2001), 161–170 (2000)

  26. Guerra, F., Toninelli, F.L.: Quadratic replica coupling in the Sherrington–Kirkpatrick mean field spin glass model. J. Math. Phys. 43(7), 3704–3716 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Guerra, F., Toninelli, F.L.: The thermodynamic limit in mean field spin glass models. Commun. Math. Phys. 230(1), 71–79 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Nat. Acad. Sci. USA 79(8), 2554–2558 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Jagannath, A., Tobasco, I.: Some properties of the phase diagram for mixed \(p\)-spin glasses. Probab. Theory Relat. Fields 167(3–4), 615–672 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Krapivsky, P.L., Redner, S.: Dynamics of majority rule in two-state interacting spin systems. Phys. Rev. Lett. 90, 1–4 (2003)

    Article  Google Scholar 

  31. Latała, R.: Exponential inequalities for the SK model of spin glasses, extending Guerras method. Unpublished manuscript (2002)

  32. Mézard, M., Montanari, A.: Information, Physics, and Computation. Oxford Graduate Texts. Oxford University Press, Oxford (2009)

    Book  MATH  Google Scholar 

  33. Mézard, M., Parisi, G., Virasoro, M.A.: Spin Glass Theory and beyond. World Scientific Lecture Notes in Physics, vol. 9. World Scientific Publishing Co. Inc., Teaneck (1987)

    MATH  Google Scholar 

  34. Nishimori, H.: Statistical physics of spin glasses and information processing, vol. 111 of International Series of Monographs on Physics. Oxford University Press, New York, 2001. An introduction, Translated from the 1999 Japanese original

  35. Panchenko, D.: Free energy in the generalized Sherrington–Kirkpatrick mean field model. Rev. Math. Phys. 17(7), 793–857 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  36. Panchenko, D.: The Sherrington–Kirkpatrick Model. Springer Monographs in Mathematics. Springer, New York (2013)

    Book  MATH  Google Scholar 

  37. Panchenko, D.: The Parisi formula for mixed \(p\)-spin models. Ann. Probab. 42(3), 946–958 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  38. Panchenko, D.: The free energy in a multi-species Sherrington–Kirkpatrick model. Ann. Probab. 43(6), 3494–3513 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Parisi, G.: Infinite number of order parameters for spin-glasses. Phys. Rev. Lett. 43, 1754–1756 (1979)

    Article  ADS  Google Scholar 

  40. Parisi, G.: A sequence of approximated solutions to the S–K model for spin glasses. J. Phys. A 13(4), L115–L121 (1980)

    Article  ADS  Google Scholar 

  41. Parisi, G.: A simple model for the immune network. Proc. Natl. Acad. Sci. USA 87(1), 429–433 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  42. Sherrington, D., Kirkpatrick, S.: Solvable model of a spin-glass. Phys. Rev. Lett. 35(26), 1792–1796 (1975)

    Article  ADS  Google Scholar 

  43. Talagrand, M.: On the high temperature phase of the Sherrington–Kirkpatrick model. Ann. Probab. 30(1), 364–381 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  44. Talagrand, M.: The Parisi formula. Ann. Math. 163(2), 221–263 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  45. Talagrand, M.: Mean field models for spin glasses. Volume I, vol. 54 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, 2011. Basic examples

  46. Talagrand, M.: Mean field models for spin glasses. Volume II, vol. 55 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer, Heidelberg, 2011. Advanced replica-symmetry and low temperature

  47. Toninelli, F.L.: About the Almeida–Thouless transition line in the Sherrington–Kirkpatrick mean-field spin glass model. Europhys. Lett. 60(5), 764–767 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to Amir Dembo and Andrea Montanari for their advice and encouragement on this project. We thank Antonio Auffinger, Erwin Bolthausen, and Aukosh Jagannath for their insights and feedback, and the referee for several suggestions to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Bates.

Additional information

E.B. was partially supported by NSF Grant DGE-114747

L.S. was partially supported by NSF Grant DGE-1656518.

A Proof of Lemma 3.1

A Proof of Lemma 3.1

Proof of Lemma 3.1

Here we consider (1.6) when \(k = 1\), and

$$\begin{aligned} \zeta _1 = \zeta \in (0,1), \quad q_1^s = q^s, \quad q_2^s = p^s. \end{aligned}$$

Recall that with these choices, we have \(Q_0 = Q_0^s = 0\) and

$$\begin{aligned} Q_1^s&= 2\sum _t \Delta _{st}^2\lambda _tq^t&Q_1&= \sum _{s,t}\Delta _{st}^2\lambda _s\lambda _tq^sq^t \\ Q_2^s&= 2\sum _{t}\Delta _{st}^2\lambda _tp^t&Q_2&= \sum _{s,t}\Delta _{st}^2\lambda _s\lambda _tp^sp^t \\ Q_3^s&= 2\sum _{t}\Delta _{st}^2\lambda _t&Q_3&= \sum _{s,t}\Delta _{st}^2\lambda _s\lambda _t. \end{aligned}$$

We have

$$\begin{aligned} \mathscr {P}_\mathrm {1RSB}(q,p,\zeta )&{:}{=}\log 2 + \sum _s \lambda _s X_0^s - \frac{\beta ^2}{2}\sum _{\ell =1}^2 \zeta _\ell (Q_{\ell +1}-Q_{\ell }) \\&= \log 2 + \sum _s \lambda _s X_0^s - \frac{\beta ^2}{2}(Q_3 - Q_2+\zeta (Q_2-Q_1)), \end{aligned}$$

where

$$\begin{aligned} X_3^s&= \log \cosh (\beta \eta _3\sqrt{Q_3^s-Q_2^s} + \beta \eta _2\sqrt{Q_2^s-Q_1^s}+\beta \eta _1\sqrt{Q_1^s}+h) \\ \Rightarrow X_2^s&= \log \mathbf {E}_3 \cosh (\beta \eta _3\sqrt{Q_3^s-Q_2^s} + \beta \eta _2\sqrt{Q_2^s-Q_1^s}+\beta \eta _1\sqrt{Q_1^s}+h) \\&= \frac{\beta ^2}{2}(Q_3^s-Q_2^s) + \log \cosh (\beta \eta _2\sqrt{Q_2^s-Q_1^s}+\beta \eta _1\sqrt{Q_1^s}+h) \\ \Rightarrow X_1^s&= \frac{1}{\zeta }\log \mathbf {E}_2 \exp (\zeta _2 X_2^s) \\&= \frac{\beta ^2}{2}(Q_3^s-Q_2^s) + \frac{1}{\zeta }\log \mathbf {E}_2 \cosh ^\zeta (\beta \eta _2\sqrt{Q_2^s-Q_1^s} + \beta \eta _1\sqrt{Q_1^s}+h) \\ \Rightarrow X_0^s&= \mathbf {E}X_1^s = \frac{\beta ^2}{2}(Q_3^s-Q_2^s) + \frac{1}{\zeta } \mathbf {E}_1\log \mathbf {E}_2 \cosh ^\zeta (\beta \eta _2\sqrt{Q_2^s-Q_1^s} + \beta \eta _1\sqrt{Q_1^s}+h). \end{aligned}$$

In simplifying \(X_2^s\), we have used the fact that for \(\eta \sim \mathcal {N}(0,1)\) and \(\sigma >0\),

$$\begin{aligned} \mathbf {E}\cosh (\sigma \eta +h)&= \frac{1}{2}\mathbf {E}(e^{\sigma \eta +h} + e^{-\sigma \eta -h}) \nonumber \\&= \frac{1}{2}(e^{\sigma ^2/2 + h} + e^{\sigma ^2/2 - h}) = e^{\sigma ^2/2}\cosh (h). \end{aligned}$$
(A.1)

In summary,

$$\begin{aligned} \mathscr {P}_\mathrm {1RSB}(q,p,\zeta )&= \log 2+ \sum _s \lambda _s \frac{1}{\zeta } \mathbf {E}_1\log \mathbf {E}_2 \cosh ^\zeta (\beta \eta _2\sqrt{Q_2^s-Q_1^s} + \beta \eta _1\sqrt{Q_1^s}+h) \nonumber \\&\quad +\frac{\beta ^2}{2}\sum _s \lambda _s (Q_3^s - Q_2^s) - \frac{\beta ^2}{2}(Q_3-Q_2+\zeta (Q_2-Q_1)). \end{aligned}$$
(A.2)

Notice that when \(\zeta = 1\), we recover the replica symmetric expression (1.9):

$$\begin{aligned} \mathscr {P}_\mathrm {1RSB}(q,p,1)&= \log 2 + \sum _s\lambda _s \mathbf {E}_1\log \mathbf {E}_2\cosh (\beta \eta _2\sqrt{Q_2^s-Q_1^s} + \beta \eta _1\sqrt{Q_1^s}+h)\nonumber \\&\quad + \frac{\beta ^2}{2} \sum _s \lambda _s(Q_3^s - Q_2^s)- \frac{\beta ^2}{2}(Q_3-Q_2+Q_2-Q_1) \nonumber \\&= \log 2 + \sum _s \lambda _s \mathbf {E}_1\bigg [\frac{\beta ^2}{2}(Q_2^s-Q_1^s) + \log \cosh (\beta \eta _1\sqrt{Q_1^s}+h)\bigg ] \nonumber \\&\quad + \frac{\beta ^2}{2} \sum _s \lambda _s(Q_3^s - Q_2^s) - \frac{\beta ^2}{2}(Q_3-Q_1) \nonumber \\&= \log 2 + \sum _s \lambda _s \mathbf {E}_1\log \cosh (\beta \eta _1\sqrt{Q_1^s}+h) \nonumber \\&\quad + \frac{\beta ^2}{2}\sum _s \lambda _s(Q_3^s-Q_1^s) - \frac{\beta ^2}{2}(Q_3-Q_1) = \mathscr {P}_\mathrm {RS}(q). \end{aligned}$$
(A.3)

Henceforth fix an RS critical point \(q = q_*\in \mathcal {C}(\beta ,h)\). For ease of notation, let us write

$$\begin{aligned} Y_1^s&:= \beta \eta _1\sqrt{Q_1^s}+h, \qquad Y_2^s := \beta \eta _2\sqrt{Q_2^s-Q_1^s} +Y_1^s, \end{aligned}$$

so that

$$\begin{aligned} \mathscr {P}_\mathrm {1RSB}(q,p,\zeta )&= \log 2+ \sum _s \lambda _s \frac{1}{\zeta } \mathbf {E}_1\log \mathbf {E}_2 \cosh ^\zeta Y_2^s +\frac{\beta ^2}{2}\sum _s \lambda _s (Q_3^s - Q_2^s) \\&\quad - \frac{\beta ^2}{2}(Q_3-Q_2+\zeta (Q_2-Q_1)). \end{aligned}$$

We can then calculate

$$\begin{aligned} \frac{\partial \mathscr {P}_\mathrm {1RSB}(q_*,p,\zeta )}{\partial \zeta }&= \sum _s \lambda _s\bigg [\frac{-\mathbf {E}_1\log \mathbf {E}_2 \cosh ^\zeta Y_2^s}{\zeta ^2} +\mathbf {E}_1\bigg (\frac{\mathbf {E}_2\log (\cosh Y_2^s)\cosh ^\zeta Y_2^s}{\zeta \mathbf {E}_2 \cosh ^\zeta Y_2^s}\bigg )\bigg ] \\&\quad - \frac{\beta ^2}{2}(Q_2-Q_1), \end{aligned}$$

which gives

$$\begin{aligned} V(p)&= \sum _s\lambda _s\bigg [-\mathbf {E}_1\log \mathbf {E}_2 \cosh Y_2^s + \mathbf {E}_1\bigg (\frac{\mathbf {E}_2\log (\cosh Y_2^s)\cosh Y_2^s}{\mathbf {E}_2\cosh Y_2^s}\bigg )\bigg ]\nonumber \\&\quad - \frac{\beta ^2}{2}(Q_2-Q_1). \end{aligned}$$
(A.4)

When \(p = q_*\), we have \(Y_2^s = Y_1^s\) and \(Q_2 = Q_1\). In particular, \(Y_2^s\) has no dependence on \(\eta _2\), and so the above expression reduces to \(V(q_*) = 0\). This proves claim (a).

The next step is to take partial derivatives with respect to the \(p^t\). First, we use (A.1) to make the simple calculation

$$\begin{aligned} \mathbf {E}_2 \cosh Y_2^s = \exp \Big (\frac{\beta ^2}{2}(Q_2^s-Q_1^s)\Big )\cosh Y_1^s. \end{aligned}$$
(A.5)

Since \(Y_1^s\) has no dependence on p, and

$$\begin{aligned} \frac{\partial }{\partial p^t}(Q_2^s-Q_1^s) = \frac{\partial }{\partial p^t}Q_2^s = 2\Delta _{st}^2\lambda _t, \end{aligned}$$
(A.6)

we find

$$\begin{aligned} \frac{\partial }{\partial p^t} \mathbf {E}_1\log \mathbf {E}_2\cosh Y_2^s =\frac{\partial }{\partial p^t}\Big [\frac{\beta ^2}{2}(Q_2^s-Q_1^s)+\mathbf {E}_1\log \cosh Y_1^s\Big ] = \beta ^2\Delta _{st}^2\lambda _t. \end{aligned}$$
(A.7)

Next we observe that for any twice differentiable function whose derivatives have at most exponential growth at infinity, (A.6) and Gaussian integration by parts together give

$$\begin{aligned} \frac{\partial }{\partial p^t} \mathbf {E}_2 f(Y_2^s) = \beta \Delta _{st}^2\lambda _t\mathbf {E}_2\bigg (f^{\prime }(Y_2^s)\frac{\eta _2}{\sqrt{Q_2^s-Q_1^s}}\bigg )&= \beta ^2\Delta _{st}^2\lambda _t\mathbf {E}_2 f^{\prime \prime }(Y_2^s). \end{aligned}$$
(A.8)

Hence

$$\begin{aligned}&\frac{\partial }{\partial p^t} \mathbf {E}_1\bigg (\frac{\mathbf {E}_2f(Y_2^s)}{\mathbf {E}_2\cosh Y_2^s}\bigg ) {\mathop {=}\limits ^{(A.5)}} \frac{\partial }{\partial p^t}\bigg [ \exp \Big (-\frac{\beta ^2}{2}(Q_2^s-Q_1^s)\Big )\mathbf {E}_1\bigg (\frac{\mathbf {E}_2 f(Y_2^s)}{\cosh Y_1^s}\bigg )\bigg ]\nonumber \\&\quad {\mathop {=}\limits ^{{(A.6),(A.8)}}} \beta ^2\Delta _{st}^2\lambda _t\exp \Big (-\frac{\beta ^2}{2}(Q_2^s-Q_1^s)\Big )\bigg [- \mathbf {E}_1\bigg (\frac{\mathbf {E}_2 f(Y_2^s)}{\cosh Y_1^s}\bigg ) + \mathbf {E}_1\bigg (\frac{\mathbf {E}_2f^{\prime \prime }(Y_2^s)}{\cosh Y_1^s}\bigg )\bigg ] \nonumber \\&\quad {=} \beta ^2\Delta _{st}^2\lambda _t\exp \Big (-\frac{\beta ^2}{2}(Q_2^s-Q_1^s)\Big )\mathbf {E}_1\bigg (\frac{\mathbf {E}_2[f^{\prime \prime }(Y_2^s)-f(Y_2^s)]}{\cosh Y_1^s}\bigg )\nonumber \\&\quad {\mathop {=}\limits ^{{(A.5)}}} \beta ^2\Delta _{st}^2\lambda _t\mathbf {E}_1\bigg (\frac{\mathbf {E}_2[f^{\prime \prime }(Y_2^s)-f(Y_2^s)]}{\mathbf {E}_2\cosh Y_2^s}\bigg ). \end{aligned}$$
(A.9)

We now apply (A.9) to \(f(x) = \log (\cosh x)\cosh x\), for which

$$\begin{aligned} f^{\prime \prime }(x)-f(x)&= \cosh x + \sinh x \tanh x, \end{aligned}$$

to obtain

$$\begin{aligned} \frac{\partial }{\partial p^t}\mathbf {E}_1\bigg (\frac{\mathbf {E}_2 \log (\cosh Y_2^s) \cosh Y_2^s}{\mathbf {E}_2\cosh Y_2^s}\bigg )\bigg ] = \beta ^2\Delta _{st}^2\lambda _t\bigg [1 + \mathbf {E}_1\bigg (\frac{\mathbf {E}_2 \sinh Y_2^s \tanh Y_2^s}{\mathbf {E}_2 \cosh Y_2^s}\bigg )\bigg ]. \end{aligned}$$
(A.10)

Finally, we have

$$\begin{aligned} \frac{\partial }{\partial p^t}(Q_2 - Q_1) = \frac{\partial }{\partial p^t}Q_2 = 2\sum _s\Delta _{st}^2\lambda _s\lambda _t p^s. \end{aligned}$$
(A.11)

Using (A.7), (A.10), and (A.11) in (A.4), we arrive at

$$\begin{aligned} \frac{\partial }{\partial p^t}V(p) = \beta ^2\lambda _t\sum _s \Delta _{st}^2\lambda _s\bigg [\mathbf {E}_1\bigg (\frac{\mathbf {E}_2 \sinh Y_2^s \tanh Y_2^s}{\mathbf {E}_2 \cosh Y_2^s}\bigg ) - p^s\bigg ]. \end{aligned}$$

Once more, if \(p = q_*\), then \(Y_2^s = Y_1^s\) has no dependence on \(\eta _2\), in which case

$$\begin{aligned} \mathbf {E}_1\bigg (\frac{\mathbf {E}_2 \sinh Y_2^s \tanh Y_2^s}{\cosh Y_1^s}\bigg ) - p^s = \mathbf {E}_1(\tanh ^2 Y_1^s) - q_*^s = q_*^s - q_*^s = 0 \quad \text {for all }s. \end{aligned}$$

Consequently, claim (b) holds: \(\nabla V(q_* ) = 0\).

Our final step is to compute the Hessian of V. We have

$$\begin{aligned} \frac{\partial ^2}{\partial p^{t^{\prime }}\partial p^t}V(p) = \beta ^2\lambda _t\sum _{s}\Delta ^2_{st}\lambda _s\bigg [\frac{\partial }{\partial p^{t^{\prime }}} \mathbf {E}_1\bigg (\frac{\mathbf {E}_2\sinh Y_2^s \tanh Y_2^s}{\mathbf {E}_2\cosh Y_2^s}\bigg ) - \delta _{st^{\prime }}\bigg ], \end{aligned}$$

where \(\delta _{st^{\prime }} = 1\) if \(s = t^{\prime }\) and 0 zero otherwise. To determine the derivative of the expectation, we apply (A.9) with \(f(x) = \sinh x \tanh x\), for which

$$\begin{aligned} f^{\prime \prime }(x)-f(x)&= 2\mathrm {sech}^3\,x. \end{aligned}$$

After doing so, we arrive at

$$\begin{aligned} \frac{\partial ^2}{\partial p^{t^{\prime }}\partial p^{t}}V(p)&= \beta ^2\lambda _t\sum _s \Delta ^2_{st}\lambda _s\bigg [2\beta ^2\Delta _{st^{\prime }}^2\lambda _{t^{\prime }}\mathbf {E}_1\bigg (\frac{\mathbf {E}_2{{\,\mathrm{sech}\,}}^3 Y_2^s}{\mathbf {E}_2\cosh Y_2^s}\bigg ) - \delta _{st^{\prime }}\bigg ]. \end{aligned}$$

As before, the expression simplifies when \(p=q^*\), since then \(Y_2^s=Y_1^s\) has no dependence on \(\eta _2\). Namely,

$$\begin{aligned} \frac{\partial ^2}{\partial p^{t^{\prime }}\partial p^{t}}V(q_*)&= \beta ^2\lambda _t\sum _{s}\Delta _{st}^2\lambda _s\big [2\beta ^2\Delta _{st^{\prime }}^2\lambda _{t^{\prime }}\mathbf {E}_1\, \mathrm {sech}^4\, Y_1^s - \delta _{st^{\prime }}\big ] \\&= \bigg (2\beta ^4\lambda _t\lambda _{t^{\prime }}\sum _s \Delta _{st}^2\Delta _{st^{\prime }}^2\lambda _s \mathbf {E}_1\, \mathrm {sech}^4\, Y_1^s\bigg ) - \beta ^2\lambda _t\lambda _{t^{\prime }}\Delta _{tt^{\prime }}^2. \end{aligned}$$

Rewriting the expression in terms of matrices yields claim (c). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bates, E., Sloman, L. & Sohn, Y. Replica Symmetry Breaking in Multi-species Sherrington–Kirkpatrick Model. J Stat Phys 174, 333–350 (2019). https://doi.org/10.1007/s10955-018-2197-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-018-2197-4

Keywords

Mathematics Subject Classification

Navigation