Skip to main content
Log in

Brownian Motion on a Pseudo Sphere in Minkowski Space \(\mathbb {R}^l_v\)

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

For a Brownian motion moving on a pseudo sphere in Minkowski space \(\mathbb {R}^l_v\) of radius r starting from point X, we obtain the distribution of hitting a fixed point on this pseudo sphere with \(l\ge 3\) by solving Dirichlet problems. The proof is based on the method of separation of variables and the orthogonality of trigonometric functions and Gegenbauer polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cohen de Lara, M.: On drift, diffusion and geometry. J. Geom. Phys. 56(8), 1215–1234 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Cammarota, V., De Gregorio, A., Macci, C.: On the asymptotic behavior of the hyperbolic Brownian. J. Stat. Phys. 154(6), 1550–1568 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Cammarota, V., Orsingher, E.: Hitting spheres on hyperbolic spaces. Theory Probab. Appl. 57(3), 419–443 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dunkel, J., Hänggi, P.: Relativistic Brownian motion. Phys. Rep. 471(1), 1–73 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  5. Dembo, A., Peres, Y., Rosen, J.: Brownian motion on compact manifolds: cover time and late points. Electron. J. Probab. 8(15), 1–14 (2003)

    MathSciNet  MATH  Google Scholar 

  6. Dembo, A., Peres, Y., Rosen, J., Zeitouni, O.: Cover times for Brownian motion and random walks in two dimensions. Ann. Math. 160(2), 433–464 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Grigor’yan, A.: Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds. Bull. Am. Math. Soc. 36, 135–249 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Garbaczewski, P.: Rotational diffusions as seen by relativistic observers. J. Math. Phys. 33(10), 3393–3401 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 4th edn. Academic Press, New York (1981)

    MATH  Google Scholar 

  10. Itô, K.: On stochastic differential equations on a differential manifold I. Nagoya Math. J. 1, 35–47 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lablée, O.: Spectrual Theory in Riemannian Geometry. European Mathematical Society (EMS), Zurich (2015)

    MATH  Google Scholar 

  12. Morava, J.: Conformal invariants of Minkowski space. Proc. Am. Math. Soc. 95, 565–570 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mckean, H.P.: Stochastic Integrals. Academic Press, New York (1969)

    MATH  Google Scholar 

  14. Mizrahi, S., Daboul, J.: Squeezed states, generalized Hermitz polynomials and pseudo-diffusion equation. Phys. A 189, 635–650 (1992)

    Article  MathSciNet  Google Scholar 

  15. Øksendal, B.: Stochastic Differential Equations, an Introduction with Applications, 6th edn. Springer, New York (2003)

    MATH  Google Scholar 

  16. O’Hara, P., Rondoni, L.: Brownian motion in Minkowski space. Entropy 17, 3581–3594 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. O’neill, B.: Semi-Riemannian Geometry with Applications to Relativity. Academic Press, New York (1983)

    MATH  Google Scholar 

  18. Polyanin, A.D., Zaitsev, V.F.: Handbook of Exact Solution for Ordinary Differential Equations. Chapman & Hall, Boca Raton (2003)

    MATH  Google Scholar 

  19. Szegö, G.: Orthogonal Polynomials, 4th edn. AMS, Providence (1975)

    MATH  Google Scholar 

Download references

Acknowledgments

We thank the anonymous referees for their valuable suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Li.

Additional information

This work was supported by National Basic Research Program of China (Grant No. 2013CB834100), National Natural Science Foundation of China (Grant No. 11571065), and National Natural Science Foundation of China (Grant No. 11171132). Xiaomeng Jiang is supported by a foundation. The foundation number is National Natural Science Foundations of China (Grant No. 11301541).

Appendix: Calculations of the Laplacian–Beltrami Operator

Appendix: Calculations of the Laplacian–Beltrami Operator

This appendix is devoted to the calculations of the Laplacian–Beltrami operator restricted on pseudo spheres. First, we consider Laplacian–Beltrami operator restricted on a spacelike pseudo sphere of \(\mathbb {R}^3_1\), namely, on the spacelike pseudo sphere

$$\begin{aligned} \mathbb {S}_r^{3,1}=\{X=(x_0,x_1,x_2)\in \mathbb {R}^3_1|-x_0^2+x_1^2+x_2^2=r^2\} \end{aligned}$$

under the relationship given by

$$\begin{aligned} x_0=\eta \sinh \alpha ,\ x_1=\eta \cos \beta \cosh \alpha ,\ x_2=\eta \sin \beta \cosh \alpha , \end{aligned}$$
(4.64)

or

$$\begin{aligned} \eta = \Vert X\Vert ,\ \tanh \alpha =\frac{x_0}{\sqrt{x_1^2+x_2^2}},\ \tan \beta =\frac{x_2}{x_1}. \end{aligned}$$
(4.65)

Thanks to multivariable calculus, we have the expression of \(\Delta \) restricted on \(\mathbb {S}^{3,1}\). That is,

$$\begin{aligned} \begin{array}{ll} \Delta _{\mathbb {S}}^{3,1}= &{} \left( \frac{\partial ^2\eta }{\partial x_1^2} + \frac{\partial ^2\eta }{\partial x_2^2} - \frac{\partial ^2\eta }{\partial x_0^2} \right) \frac{\partial }{\partial \eta } + \left( \frac{\partial ^2\alpha }{\partial x_1^2} + \frac{\partial ^2\alpha }{\partial x_2^2} -\frac{\partial ^2\alpha }{\partial x_0^2} \right) \frac{\partial }{\partial {\alpha }}\\ &{} + \left( \frac{\partial ^2\beta }{\partial x_1^2} + \frac{\partial ^2\beta }{\partial x_2^2} -\frac{\partial ^2\beta }{\partial x_0^2} \right) \frac{\partial }{\partial \beta } + \left( \left( \frac{\partial \eta }{\partial x_1}\right) ^2+ \left( \frac{\partial \eta }{\partial x_2}\right) ^2 -\left( \frac{\partial \eta }{\partial x_0}\right) ^2 \right) \frac{\partial ^2}{\partial \eta ^2}\\ &{} + \left( \left( \frac{\partial {\alpha }}{\partial x_1}\right) ^2+ \left( \frac{\partial {\alpha }}{\partial x_2}\right) ^2 -\left( \frac{\partial {\alpha }}{\partial x_0}\right) ^2 \right) \frac{\partial ^2}{\partial {\alpha }^2} \\ &{} + \left( \left( \frac{\partial \beta }{\partial x_1}\right) ^2+ \left( \frac{\partial \beta }{\partial x_2}\right) ^2 -\left( \frac{\partial \beta }{\partial x_0}\right) ^2 \right) \frac{\partial ^2}{\partial \beta ^2}\\ &{} +\, 2 \left( \frac{\partial \eta \partial {\alpha }}{\partial x_1^2} + \frac{\partial \eta \partial \alpha }{\partial x_2^2} -\frac{\partial \eta \partial \alpha }{\partial x_0^2} \right) \frac{\partial ^2}{\partial \eta \partial \alpha } + 2 \left( \frac{\partial \alpha \partial \beta }{\partial x_1^2} + \frac{\partial \alpha \partial \beta }{\partial x_2^2} -\frac{\partial \alpha \partial \beta }{\partial x_0^2} \right) \frac{\partial ^2}{\partial \alpha \partial \beta }\\ &{} +\, 2 \left( \frac{\partial \beta \partial \eta }{\partial x_1^2} + \frac{\partial \beta \partial \eta }{\partial x_2^2} -\frac{\partial \beta \partial \eta }{\partial x_0^2} \right) \frac{\partial ^2}{\partial \beta \partial \eta }. \end{array} \end{aligned}$$
(4.66)

To calculate the Laplacian \(\Delta \) in spacelike coordinates, we only need to calculate the partial differentials on the right hand side of equality (4.66). By (4.65), we get

$$\begin{aligned} \begin{array}{lll} \frac{\partial \eta }{\partial x_0}=-\frac{x_0}{\eta }, &{}\frac{\partial \eta }{\partial x_1}=\frac{x_1}{\eta }, &{}\frac{\partial \eta }{\partial x_2}=\frac{x_2}{\eta }, \\ \frac{\partial \alpha }{\partial x_0}=\frac{\sqrt{\eta ^2+x_0^2}}{\eta ^2}, &{}\frac{\partial \alpha }{\partial x_1}=-\frac{x_0x_1\cosh ^2\alpha }{(\eta ^2+x_0^2)^{3/2}}, &{}\frac{\partial \alpha }{\partial x_2}=-\frac{x_0x_2\cosh ^2\alpha }{(\eta ^2+x_0^2)^{3/2}}, \\ \frac{\partial \beta }{\partial x_0}=0, &{}\frac{\partial \beta }{\partial x_1}=-\frac{x_2}{\eta ^2+x_0^2}, &{}\frac{\partial \beta }{\partial x_2}=\frac{x_1}{\eta ^2+x_0^2}, \\ \frac{\partial ^2\eta }{\partial x_0^2}=-\frac{\eta ^2+x_0^2}{\eta ^3}, &{}\frac{\partial ^2\eta }{\partial x_1^2}=\frac{\eta ^2-x_1^2}{\eta ^3}, &{}\frac{\partial ^2\eta }{\partial x_2^2}=\frac{\eta ^2-x_2^2}{\eta ^3}, \\ \frac{\partial ^2\alpha }{\partial x_0^2}=\frac{2x_0\sqrt{\eta ^2+x_0^2}}{\eta ^4}, &{}\frac{\partial ^2\alpha }{\partial x_1^2}=\frac{2x_0x_1^2(\eta ^2+x_0^2)-x_0x_2^2\eta ^2}{\eta ^4(\eta ^2+x_0^2)^{3/2}}, &{}\frac{\partial ^2\alpha }{\partial x_2^2}=\frac{2x_0x_2^2(\eta ^2+x_0^2)-x_0x_1^2\eta ^2}{\eta ^4(\eta ^2+x_0^2)^{3/2}}, \\ \frac{\partial ^2\beta }{\partial x_0^2}=0, &{}\frac{\partial ^2\beta }{\partial x_1^2}=\frac{2x_1x_2}{(\eta ^2+x_0^2)^2}, &{}\frac{\partial ^2\beta }{\partial x_2^2}=-\frac{2x_1x_2}{(\eta ^2+x_0^2)^2}. \end{array} \end{aligned}$$

Thus, the coefficients in the partial differential operators in (4.66) are

$$\begin{aligned} \frac{\partial ^2\eta }{\partial x_1^2}+\frac{\partial ^2\eta }{\partial x_2^2}-\frac{\partial ^2\eta }{\partial x_0^2}&=\frac{2}{\eta }, \\ \frac{\partial ^2\alpha }{\partial x_1^2}+\frac{\partial ^2\alpha }{\partial x_2^2}-\frac{\partial ^2\alpha }{\partial x_0^2}&=-\frac{\tanh \alpha }{\eta ^2}, \\ \frac{\partial ^2\beta }{\partial x_1^2}+\frac{\partial ^2\beta }{\partial x_2^2}-\frac{\partial ^2\beta }{\partial x_0^2}&=0,\\ \left( \frac{\partial \eta }{\partial x_1}\right) ^2+ \left( \frac{\partial \eta }{\partial x_2}\right) ^2 -\left( \frac{\partial \eta }{\partial x_0}\right) ^2&=1,\\ \left( \frac{\partial \alpha }{\partial x_1}\right) ^2+ \left( \frac{\partial \alpha }{\partial x_2}\right) ^2 -\left( \frac{\partial \alpha }{\partial x_0}\right) ^2&=\frac{1}{\eta ^2\cosh ^2\alpha },\\ \left( \frac{\partial \beta }{\partial x_1}\right) ^2+ \left( \frac{\partial \beta }{\partial x_2}\right) ^2 -\left( \frac{\partial \beta }{\partial x_0}\right) ^2&=-\frac{1}{\eta ^2}, \end{aligned}$$

while the coefficients of the cross terms are zeros.

Then the Laplacian–Beltrami operator \(\Delta \) restricted on \(\mathbb {S}^{3,1}\) can be expressed in coordinates \((\eta ,\alpha ,\beta )_{\mathbb {S}}\) as

$$\begin{aligned} \Delta _{\mathbb {S}}^{3,1}=\left( \frac{2}{\eta }\frac{\partial }{\partial \eta }+\frac{\partial ^2}{\partial \eta ^2}\right) -\left( \frac{\tanh \alpha }{\eta ^2}\frac{\partial }{\partial \alpha }+\frac{1}{\eta ^2}\frac{\partial ^2}{\partial \alpha ^2}\right) +\frac{1}{\eta ^2\cosh ^2\alpha }\frac{\partial ^2}{\partial \beta ^2}, \end{aligned}$$

while the Laplacian–Beltrami operator restricted on \(\mathbb {S}^{3,1}_r\) is expressed as

$$\begin{aligned} \Delta _{sr}^{3,1}=-\frac{1}{r^2}\left( \tanh \alpha \frac{\partial }{\partial \alpha }+\frac{\partial ^2}{\partial \alpha ^2}\right) +\frac{1}{r^2}\frac{1}{\cosh ^2\alpha }\frac{\partial ^2}{\partial \beta ^2}. \end{aligned}$$
(4.67)

Now return to the general case \(\mathbb {R}^l_v\). Letting \(x=(x_1,x_2,\ldots ,x_v)\) and \(y=(y_1,y_2,\ldots ,y_{l-v})\), for any point \(X\in \mathbb {S}^{l,v}\) we have

$$\begin{aligned} -\sum _{i=1}^vx_i^2+\sum _{j=1}^{l-v}y_j^2=\eta ^2>0. \end{aligned}$$

Again, we use the coordinates similar to \((\cdot ,\cdot ,\cdot )_{\mathbb {S}}\), namely, a system of coordinates \((\eta ,\alpha ,\theta _y,\theta _x)_{\mathbb {S}}\) satisfying

$$\begin{aligned} \begin{array}{ll} &{} \eta ^2=-\sum _{i=1}^vx_i^2+\sum _{j=1}^{l-v}y_j^2,\\ &{} \tanh ^2\alpha =\frac{\sum _{i=1}^vx_i^2}{\sum _{j=1}^{l-v}x_j^2}, \end{array} \end{aligned}$$
(4.68)

and \(\theta _x=(\theta _{x,1},\ldots ,\theta _{x,v-1})\), \(\theta _y=(\theta _{y,1},\ldots ,\theta _{y,l-v-1})\) are the standard polar coordinates on the Euclidean unit sphere \(\mathcal {S}^{v-1}\) and \(\mathcal {S}^{l-v-1}\) respectively. Thus the Laplacian–Beltrami operator restricted on \(\mathbb {S}^{l,v}\) with \(l\ge 4\) can be expressed as

$$\begin{aligned} \begin{array}{ll} \Delta _{\mathbb {S}}^{l,v}= &{} \left( \frac{\partial ^2}{\partial \eta ^2}+\frac{l-1}{\eta }\frac{\partial }{\partial \eta }\right) \\ &{} -\,\frac{1}{\eta ^2}\left( \frac{\partial ^2}{\partial \alpha ^2}+[(l-v-1)\tanh \alpha +(v-1)\coth \alpha ]\frac{\partial }{\partial \alpha }\right) \\ &{} +\,\frac{1}{\eta ^2\cosh ^2\alpha }\Delta _{\mathcal {S}^{l-v-1}}-\frac{1}{\eta ^2\sinh ^2\alpha }\Delta _{\mathcal {S}^{v-1}}, \end{array} \end{aligned}$$
(4.69)

where \(\Delta _{\mathcal {S}^n}\) is the Laplacian operator on the n-dimensional unit sphere.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Li, Y. Brownian Motion on a Pseudo Sphere in Minkowski Space \(\mathbb {R}^l_v\) . J Stat Phys 165, 164–183 (2016). https://doi.org/10.1007/s10955-016-1574-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-016-1574-0

Keywords

Navigation