Journal of Statistical Physics

, Volume 159, Issue 5, pp 1127–1153 | Cite as

Complete Positivity and Thermodynamics in a Driven Open Quantum System

  • Giuseppe Argentieri
  • Fabio Benatti
  • Roberto Floreanini
  • Marco Pezzutto


While it is well known that complete positivity guarantees the fulfilment of the second law of thermodynamics, its possible violations have never been proposed as a check of the complete positivity of a given open quantum dynamics. We hereby consider an open quantum micro-circuit, effectively describable as a two-level open quantum system, whose asymptotic current might be experimentally accessible. This latter could indeed be used to discriminate between its possible non-completely positive Redfield dynamics and a completely positive one obtained by standard weak-coupling limit techniques, at the same time verifying the fate of the second law of thermodynamics in such a context.


Open quantum systems Complete positivity Second law of thermodynamics 



M.P. gratefully acknowledges the support from Fundação para a Ciência e a Tecnologia (Portugal), namely through programmes PTDC/POPH and Projects PEst-OE/EGE/UI0491/2013, PEst-OE/EEI/LA0008/2013, IT/QuSim and CRUP-CPU/CQVibes, partially funded by EU FEDER, from the EU FP7 Project LANDAUER (GA 318287), and support from FCT through scholarship SFRH/BD/52240/2013.


  1. 1.
    Alicki, R., Lendi, K.: Quantum Dynamical Semipgroups and Applications. Lecture Notes in Physics, vol. 717. Springer, Berlin (2007)Google Scholar
  2. 2.
    Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)MATHGoogle Scholar
  3. 3.
    Weiss, U.: Quantum Dissipative Systems. World Scientific, Singapore (1999)CrossRefMATHGoogle Scholar
  4. 4.
    Gardiner, C.W., Zoller, P.: Quantum Noise. Springer, Berlin (2000)CrossRefMATHGoogle Scholar
  5. 5.
    Gorini, V., et al.: Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17, 821–825 (1976)CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119–130 (1976)CrossRefADSMATHMathSciNetGoogle Scholar
  7. 7.
    Davies, E.B.: Markovian master equations. II. Math. Ann. 219, 147–158 (1976)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Dumcke, R., Spohn, H.: The proper form of the generator in the weak coupling limit. Z. Physik B 34, 419–422 (1979)CrossRefADSGoogle Scholar
  9. 9.
    Pechukas, P.: Reduced dynamics need not be completely positive. Phys. Rev. Lett. 73, 1060–1062 (1994)CrossRefADSMATHMathSciNetGoogle Scholar
  10. 10.
    Shaji, A., Sudarshan, E.C.G.: Who’s afraid of not completely positive maps? Phys. Lett. A 341, 48–54 (2005)CrossRefADSMATHMathSciNetGoogle Scholar
  11. 11.
    Rodriguez-Rosario, C., et al.: Completely positive maps and classical correlations. J. Phys. A 41, 205301 (2008)CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    McCracken, J.M.: Hamiltonian composite dynamics can almost always lead to negative reduced dynamics. Phys. Rev. A 88, 022103 (2013)CrossRefADSGoogle Scholar
  13. 13.
    Benatti, F., et al.: Complete positivity and entangled degrees of freedom. J. Phys. A 35, 4955–4972 (2002)CrossRefADSMATHMathSciNetGoogle Scholar
  14. 14.
    Benatti, F., Floreanini, R.: Open quantum dynamics: complete positivity and entanglement. Int. J. Mod. Phys. B 19, 3063–3139 (2005)CrossRefADSMATHMathSciNetGoogle Scholar
  15. 15.
    Spohn, H., Lebowitz, J.: Irreversible thermodynamics for quantum systems weakly coupled to thermal reservoirs. Adv. Chem. Phys. 38, 109–142 (1978)Google Scholar
  16. 16.
    Spohn, H.: Entropy production for quantum dynamical semigroups. J. Math. Phys. 19, 1227–1230 (1978)CrossRefADSMATHMathSciNetGoogle Scholar
  17. 17.
    Alicki, R.: The quantum open system as a model of the heat engine. J. Phys. A 12, L103–L107 (1979)CrossRefADSGoogle Scholar
  18. 18.
    Argentieri, G., et al.: Violations of the second law of thermodynamics by a non-completely positive dynamics. Eur. phys. Lett. 107(50007), p1–p7 (2014)Google Scholar
  19. 19.
    Pellegrini, F., et al.: Crossover from adiabatic to antiadiabatic quantum pumping with dissipation. Phys. Rev. Lett. 107, 060401 (2011)CrossRefADSGoogle Scholar
  20. 20.
    Wehrl, A.: General properties of entropy. Rev. Mod. Phys. 50, 221–260 (1978)CrossRefADSMathSciNetGoogle Scholar
  21. 21.
    Nakajima, S.: On quantum theory of transport phenomena steady diffusion. Prog. Theor. Phys. 20, 948–959 (1958)CrossRefADSMATHMathSciNetGoogle Scholar
  22. 22.
    Zwanzig, R.: Ensemble method in the theory of irreversibility. J. Chem. Phys. 33, 1338–1341 (1960)CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    Clos, G., Breuer, H.-P.: Quantification of memory effects in the spin-boson model. Phys. Rev. A 86, 012115 (2012)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Giuseppe Argentieri
    • 1
  • Fabio Benatti
    • 2
    • 3
  • Roberto Floreanini
    • 3
  • Marco Pezzutto
    • 4
  1. 1.Department of Physics and AstronomyUniversity of ExeterExeterUK
  2. 2.Dipartimento di FisicaUniversità di TriesteTriesteItaly
  3. 3.Istituto Nazionale di Fisica NucleareSezione di TriesteTriesteItaly
  4. 4.Physics of Information Group, Instituto de Telecomunicações and Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal

Personalised recommendations