Skip to main content
Log in

Complete Positivity and Thermodynamics in a Driven Open Quantum System

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

While it is well known that complete positivity guarantees the fulfilment of the second law of thermodynamics, its possible violations have never been proposed as a check of the complete positivity of a given open quantum dynamics. We hereby consider an open quantum micro-circuit, effectively describable as a two-level open quantum system, whose asymptotic current might be experimentally accessible. This latter could indeed be used to discriminate between its possible non-completely positive Redfield dynamics and a completely positive one obtained by standard weak-coupling limit techniques, at the same time verifying the fate of the second law of thermodynamics in such a context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. A preliminary investigation on these topics has been reported in [18].

References

  1. Alicki, R., Lendi, K.: Quantum Dynamical Semipgroups and Applications. Lecture Notes in Physics, vol. 717. Springer, Berlin (2007)

  2. Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  3. Weiss, U.: Quantum Dissipative Systems. World Scientific, Singapore (1999)

    Book  MATH  Google Scholar 

  4. Gardiner, C.W., Zoller, P.: Quantum Noise. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  5. Gorini, V., et al.: Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17, 821–825 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  6. Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119–130 (1976)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Davies, E.B.: Markovian master equations. II. Math. Ann. 219, 147–158 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dumcke, R., Spohn, H.: The proper form of the generator in the weak coupling limit. Z. Physik B 34, 419–422 (1979)

    Article  ADS  Google Scholar 

  9. Pechukas, P.: Reduced dynamics need not be completely positive. Phys. Rev. Lett. 73, 1060–1062 (1994)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Shaji, A., Sudarshan, E.C.G.: Who’s afraid of not completely positive maps? Phys. Lett. A 341, 48–54 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Rodriguez-Rosario, C., et al.: Completely positive maps and classical correlations. J. Phys. A 41, 205301 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  12. McCracken, J.M.: Hamiltonian composite dynamics can almost always lead to negative reduced dynamics. Phys. Rev. A 88, 022103 (2013)

    Article  ADS  Google Scholar 

  13. Benatti, F., et al.: Complete positivity and entangled degrees of freedom. J. Phys. A 35, 4955–4972 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Benatti, F., Floreanini, R.: Open quantum dynamics: complete positivity and entanglement. Int. J. Mod. Phys. B 19, 3063–3139 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Spohn, H., Lebowitz, J.: Irreversible thermodynamics for quantum systems weakly coupled to thermal reservoirs. Adv. Chem. Phys. 38, 109–142 (1978)

    Google Scholar 

  16. Spohn, H.: Entropy production for quantum dynamical semigroups. J. Math. Phys. 19, 1227–1230 (1978)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Alicki, R.: The quantum open system as a model of the heat engine. J. Phys. A 12, L103–L107 (1979)

    Article  ADS  Google Scholar 

  18. Argentieri, G., et al.: Violations of the second law of thermodynamics by a non-completely positive dynamics. Eur. phys. Lett. 107(50007), p1–p7 (2014)

    Google Scholar 

  19. Pellegrini, F., et al.: Crossover from adiabatic to antiadiabatic quantum pumping with dissipation. Phys. Rev. Lett. 107, 060401 (2011)

    Article  ADS  Google Scholar 

  20. Wehrl, A.: General properties of entropy. Rev. Mod. Phys. 50, 221–260 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  21. Nakajima, S.: On quantum theory of transport phenomena steady diffusion. Prog. Theor. Phys. 20, 948–959 (1958)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. Zwanzig, R.: Ensemble method in the theory of irreversibility. J. Chem. Phys. 33, 1338–1341 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  23. Clos, G., Breuer, H.-P.: Quantification of memory effects in the spin-boson model. Phys. Rev. A 86, 012115 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

M.P. gratefully acknowledges the support from Fundação para a Ciência e a Tecnologia (Portugal), namely through programmes PTDC/POPH and Projects PEst-OE/EGE/UI0491/2013, PEst-OE/EEI/LA0008/2013, IT/QuSim and CRUP-CPU/CQVibes, partially funded by EU FEDER, from the EU FP7 Project LANDAUER (GA 318287), and support from FCT through scholarship SFRH/BD/52240/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Benatti.

Appendices

Redfield Type Master Equation

In this appendix we discuss the derivation of the master equation (22): we follow the so-called projection technique [21, 22] applied to the interaction representation. We thus set

$$\begin{aligned} R_{\mathcal{S}\mathcal{B}}(t)&= \mathrm{e}^{it(H_\text {eff}+H_\mathcal{B})}\, {\varrho }_{\mathcal{S}\mathcal{B}}(t)\,\mathrm{e}^{-it(H_\text {eff}+H_\mathcal{B})}\end{aligned}$$
(49)
$$\begin{aligned} K_{\mathcal{S}\mathcal{B}}(t)&= \mathrm{e}^{it(H_\text {eff}+H_\mathcal{B})}\, {H}_{\mathcal{S}\mathcal{B}}(t)\,\mathrm{e}^{-it(H_\text {eff}+H_\mathcal{B})}, \end{aligned}$$
(50)

whence

$$\begin{aligned} \frac{\mathrm{d}R_{\mathcal{S}\mathcal{B}}(t)}{\mathrm{d}t}=\lambda \,\mathbb {K}_t[R_{\mathcal{S}\mathcal{B}}(t)], \quad \mathbb {K}_t[R_{\mathcal{S}\mathcal{B}}(t)]=-i, [K_{\mathcal{S}\mathcal{B}}(t),\,R_{\mathcal{S}\mathcal{B}}(t)]. \end{aligned}$$
(51)

Let \(\varrho _\beta \) be the bath Gibbs state at temperature \(T\) such that \([H_\mathcal{B},\,\varrho _\beta ]=0\); the following linear operators act as projectors on the states \( {\varrho }_{\mathcal{S}\mathcal{B}}(t)\) of the compound system \(\mathcal{S}+\mathcal{B}\):

$$\begin{aligned} \mathbb {P}[R_{\mathcal{S}\mathcal{B}}(t)]= (\mathrm{Tr}_\mathcal{B}(R_{\mathcal{S}\mathcal{B}}(t)))\otimes \varrho _\beta =R(t)\otimes \varrho _\beta ,\quad \mathbb {Q}=\mathrm{id}-\mathbb {P}, \end{aligned}$$
(52)

with

$$\begin{aligned} R(t)=\mathrm{Tr}_\mathcal{B}(R_{\mathcal{S}\mathcal{B}}(t))=\mathrm{e}^{itH_\text {eff}}\,\mathrm{Tr}_\mathcal{B}(\varrho _{\mathcal{S}\mathcal{B}}(t))\,\mathrm{e}^{-itH_\text {eff}} \end{aligned}$$
(53)

giving the time-evolving density matrix of the open quantum system \(\mathcal{S}\) in its own interaction representation.

Let \(\mathbb {K}^{PP}_t=\mathbb {P}\circ \mathbb {K}_t\circ \mathbb {P}\), \(\mathbb {K}^{PQ}_t=\mathbb {P}\circ \mathbb {K}_t\circ \mathbb {Q}\), \(\mathbb {K}^{QP}_t=\mathbb {Q}\circ \mathbb {K}_t\circ \mathbb {P}\) and \(\mathbb {K}^{QQ}_t=\mathbb {Q}\circ \mathbb {K}_t\circ \mathbb {Q}\) where \(\circ \) denotes the composition of maps. Then, (51) splits into the two coupled differential equations

$$\begin{aligned} \frac{\mathrm{d}\mathbb {P}[R_{\mathcal{S}\mathcal{B}}(t)]}{\mathrm{d}t}&= \lambda \,\mathbb {K}^{PP}_t\circ \mathbb {P}[R_{\mathcal{S}\mathcal{B}}(t)]+\lambda \,\mathbb {K}^{PQ}_t\circ \mathbb {Q}[R_{\mathcal{S}\mathcal{B}}(t)]\end{aligned}$$
(54)
$$\begin{aligned} \frac{\mathrm{d}\mathbb {Q}[R_{\mathcal{S}\mathcal{B}}(t)]}{\mathrm{d}t}&= \lambda \,\mathbb {K}^{QP}_t\circ \mathbb {P}[R_{\mathcal{S}\mathcal{B}}(t)]+\lambda \,\mathbb {K}^{QQ}_t\circ \mathbb {Q}[R_{\mathcal{S}\mathcal{B}}(t)]. \end{aligned}$$
(55)

The second equation is formally solved by

$$\begin{aligned} \mathbb {Q}[R_{\mathcal{S}\mathcal{B}}(t)]=\mathbb {W}_{t,0}^{QQ}\circ \mathbb {Q}[R_{\mathcal{S}\mathcal{B}}]+\lambda \,\int _0^t\mathrm{d}s\, \mathbb {W}_{t,s}^{QQ}\circ \mathbb {K}^{QP}_s\circ \mathbb {P}[R_{\mathcal{S}\mathcal{B}}(s)] \end{aligned}$$
(56)

with \(\mathbb {W}_{t,s}^{QQ}\) the time-ordered solution to

$$\begin{aligned} \frac{\mathrm{d}\mathbb {W}_{t,s}^{QQ}}{\mathrm{d}t}=\lambda \,\mathbb {K}^{QQ}_t\circ \mathbb {W}_{t,s}^{QQ}, \quad \mathbb {W}_{s,s}=\mathrm{id}. \end{aligned}$$
(57)

With initial condition \( {\varrho }_{\mathcal{S}\mathcal{B}}=\varrho \otimes \varrho _\mathcal{B}\), from \(\mathbb {Q}[R_{\mathcal{S}\mathcal{B}}]=\mathbb {Q}[ {\varrho }_{\mathcal{S}\mathcal{B}}]=0\) one gets

$$\begin{aligned} \mathbb {Q}[R_{\mathcal{S}\mathcal{B}}(t)]=\lambda \,\int _0^t\mathrm{d}s\, \mathbb {W}_{t,s}^{QQ}\circ \mathbb {K}^{QP}_s\circ \mathbb {P}[R_{\mathcal{S}\mathcal{B}}(s)] , \end{aligned}$$
(58)

whence, inserting (58) into (54),

$$\begin{aligned} \frac{\mathrm{d}\mathbb {P}[R_{\mathcal{S}\mathcal{B}}(t)]}{\mathrm{d}t}=\lambda \,\mathbb {K}^{PP}_t\circ \mathbb {P}[R_{\mathcal{S}\mathcal{B}}(t)]+\lambda ^2\,\int _0^t\mathrm{d}s\, \mathbb {K}^{PQ}_t\circ \mathbb {W}^{QQ}_{t,s}\circ \mathbb {K}_s^{QP}\circ \mathbb {P}[R_{\mathcal{S}\mathcal{B}}(s)]. \end{aligned}$$
(59)

The form of the interaction Hamiltonian in Eq. (21) and the fact that position operators have vanishing mean values with respect to Gibbs states yield \(\mathrm{Tr}_\mathcal{B}(\varrho _\mathcal{B}K_{\mathcal{S}\mathcal{B}}(t))=0\); then, \(\mathbb {P}[R_{\mathcal{S}\mathcal{B}}(t)]=R(t)\otimes \varrho _\beta \) implies

$$\begin{aligned} \frac{\mathrm{d}R(t)}{\mathrm{d}t}=-\,\lambda ^2 \int _0^t\mathrm{d}u\,\mathrm{Tr}_\mathcal{B}\Big (\Big [K_{\mathcal{S}\mathcal{B}}(t),\mathbb {Q}\circ \mathbb {W}^{QQ}_{t,u}\circ \mathbb {Q}\Big [K_{\mathcal{S}\mathcal{B}}(u),\,R(u)\otimes \varrho _\beta \Big ]\Big ]\Big ). \end{aligned}$$
(60)

The above equation depends on the history of the system state \(R(s)\) for all times \(0\le s\le t\); in order to eliminate this dependence, one takes into account the weak-coupling hypothesis \(\lambda \ll 1\) and looks at the dynamics as a function of a slow time parameter \(\tau =t\lambda ^2\). Firstly, by a change of integration variable \(s=t-u\), (60) is recast as

$$\begin{aligned} \frac{\mathrm{d}R(t)}{\mathrm{d}t}=-\,\lambda ^2 \int _0^t\mathrm{d}u\,\mathrm{Tr}_\mathcal{B}\Big (\Big [K_{\mathcal{S}\mathcal{B}}(t),\mathbb {Q}\circ \mathbb {W}^{QQ}_{t,t-u}\circ \mathbb {Q}\Big [K_{\mathcal{S}\mathcal{B}}(t-u),\,R_{t-u}\otimes \varrho _\beta \Big ]\Big ]\Big ). \end{aligned}$$
(61)

Then, letting \(\lambda \rightarrow 0\), \(\mathbb {W}^{QQ}_{t,s}\rightarrow \mathrm{id}\) as the right hand side of (57) vanishes, and

$$\begin{aligned}&\mathbb {Q}\circ \mathbb {W}^{QQ}_{t,s}\circ \mathbb {Q}\Bigg [\Big [K_{\mathcal{S}\mathcal{B}}(s),\,R(s)\otimes \varrho _\beta \Big ]\Bigg ]\,\rightarrow \, \mathbb {Q}\Bigg [\Big [K_{\mathcal{S}\mathcal{B}}(s),\, R(s)\otimes \varrho _\beta \Big ]\Bigg ]\\&\quad =\Big [K_{\mathcal{S}\mathcal{B}}(s),\, R(s)\otimes \varrho _\beta \Big ]. \end{aligned}$$

The last equality follows from \(\mathrm{Tr}_\mathcal{B}(\varrho _\beta K_{\mathcal{S}\mathcal{B}}(s))=0\), as explained before.

At this point, one usually sends the integration upper limit to \(+\infty \) and, in \(R(t-u)\), replaces \(t-u=\tau /\lambda ^2-u\) with \(t\); then, Eq. (61) reads

$$\begin{aligned} \frac{\mathrm{d}R(t)}{\mathrm{d}t}=-\lambda ^2 \int _0^{+\infty }\mathrm{d}u\,\mathrm{Tr}_\mathcal{B}\Big (\Big [K_{\mathcal{S}\mathcal{B}}(t),\,\Big [K_{\mathcal{S}\mathcal{B}}(t-u),\,R(t)\otimes \varrho _\beta \Big ]\Big ]\Big ). \end{aligned}$$
(62)

By going back from the interaction picture to the Schrödinger one, the following master equation for \(\varrho (t)\) is finally obtained,

$$\begin{aligned} \frac{\mathrm{d}\varrho (t)}{\mathrm{d}t}&= \mathbb {L}_t[\varrho (t)]=-i\,\Big [H_\text {eff},\, \varrho (t)\Big ]+\lambda ^2\, {\mathbb {N}}_t[\varrho (t)]\end{aligned}$$
(63)
$$\begin{aligned} {\mathbb {N}}_t[\varrho (t)]&= - \int _0^{+\infty }\mathrm{d}u\,\mathrm{Tr}_\mathcal{B}\Big (\Big [ {H}_{\mathcal{S}\mathcal{B}}(t),\, \Big [\mathrm{e}^{u(\mathbb {H}_\text {eff}+\mathbb {H}_\mathcal{B})}[ {H}_{\mathcal{S}\mathcal{B}}(t-u)],\, \varrho (t)\otimes \varrho _\beta \Big ]\Big ]\Big ), \end{aligned}$$
(64)

where

$$\begin{aligned} \mathrm{e}^{u(\mathbb {H}_\text {eff}+\mathbb {H}_\mathcal{B})}[X]=\mathrm{e}^{-iu(H_\text {eff}+H_\mathcal{B})}\,X\,\mathrm{e}^{iu(H_\text {eff}+H_\mathcal{B})}. \end{aligned}$$
(65)

Using (21) and the thermal state \(2\)-point functions (25) one finally obtains:

$$\begin{aligned} \nonumber {\mathbb {N}}_t[ \varrho (t)]&= -\sum _{\xi =1,3}\sum _n\lambda ^2_n \int _0^{+\infty }\mathrm{d}u\,\left\{ C(\omega _n,u)\Big [ {\sigma }_\xi (t),\, \mathrm{e}^{u\mathbb {H}_\text {eff}}[ {\sigma }_\xi (t-u)]\, \varrho (t)\Big ]\right. \\&\left. \quad +\,C^*(\omega _n,u)\Big [ \varrho (t)\,\mathrm{e}^{u\mathbb {H}_\text {eff}}[ {\sigma }_\xi (t-u)],\, {\sigma }_\xi (t)\Big ]\right\} , \end{aligned}$$
(66)

where

$$\begin{aligned} C(\omega _n,u)=2m\omega _n\mathrm{Tr}_\mathcal{B}\Big (\varrho _\beta \,q_{\xi ,n}\,\mathrm{e}^{-iuH_\mathcal{B}}\,q_{\xi ,n}\, \mathrm{e}^{iuH_\mathcal{B}}\Big ). \end{aligned}$$
(67)

Since the couplings \(\lambda _n\) do not depend on \(\xi =1,3\) the explicit dependence on time \(t\) disappears. Indeed, let

$$\begin{aligned} \mathcal{R}(t)=\begin{pmatrix} \cos \Omega t&{}\quad 0&{}\quad \sin \Omega t\\ 0&{}\quad 1&{}\quad 0\\ -\sin \Omega t&{}\quad 0&{}\quad \cos \Omega t \end{pmatrix} \end{aligned}$$
(68)

be the matrix which implements the rotation (21):

$$\begin{aligned} {\sigma }_\xi (t)=\sum _{\eta =1,2,3}\mathcal{R}_{\xi \eta }(t)\sigma _\eta , \quad \xi =1,3. \end{aligned}$$
(69)

Then, for generic \(2\times 2\) matrices \(A\) and \(B\) one finds

$$\begin{aligned} \sum _{\xi =1,3}A\, {\sigma }_\xi (t)\,B\, {\sigma }_\xi (t-u)&= \sum _{\xi =1,3}\sum _{\eta _1,\eta _2=1,2,3}\mathcal{R}_{\xi \eta _1}(t)\mathcal{R}_{\xi \eta _2}(t-u)\,A\, {\sigma }_{\eta _1}\,B\, {\sigma }_{\eta _2}\\&= \sum _{\eta _1,\eta _2=1,3}\mathcal{R}_{\eta _1\eta _2}(-u)\,A\, {\sigma }_{\eta _1}\,B\, {\sigma }_{\eta _2}= \sum _{\xi =1,3}A\,\sigma _\xi \,B\, {\sigma }_\xi (-u). \end{aligned}$$

Therefore, \( {\mathbb {N}}_t[ \varrho (t)]\) becomes time-independent and equals

$$\begin{aligned} \nonumber {\mathbb {N}}[ \varrho (t)]&= -\sum _{\xi =1,3}\sum _n\lambda ^2_n \int _0^{+\infty }\mathrm{d}u\,\left\{ C(\omega _n,u)\Big [\sigma _\xi ,\, \mathrm{e}^{-iu H_\text {eff}}\, {\sigma }_\xi (-u)\,\mathrm{e}^{iu H_\text {eff}} \varrho (t)\Big ]\right. \\&\left. \quad +\,C^*(\omega _n,u)\Big [ \varrho (t)\,\mathrm{e}^{-iu H_\text {eff}}\, {\sigma }_\xi (-u)\,\mathrm{e}^{iu H_\text {eff}},\,\sigma _\xi \Big ]\right\} , \end{aligned}$$
(70)

and, using (24) and (26), the master equation (63) reduces to (22).

Therefore, the generator \(\mathbb {L}_t\) in (63) becomes time-independent, too: \(\mathbb {L}_t=\mathbb {L}\). In order to recast it in Lindblad form as in (1) and (2), we first pass from the Pauli triple \(\sigma _{1,2,3}\) to the rotated one, \(\hat{\sigma }_{1,2,3}\), in (36):

$$\begin{aligned} \sigma _\xi =\sum _{j=1}^3\mathcal {V}_{j\xi }\hat{\sigma }_j,\quad \mathcal{V}=\frac{1}{\omega _{\text {eff}}}\begin{pmatrix}\omega _\text {eff}&{}\quad \! 0&{}\quad \! 0\\ 0&{}\quad \!\Delta &{}\quad \!\Omega \\ 0&{}\quad \!-\Omega &{}\quad \!\Delta \end{pmatrix}. \end{aligned}$$
(71)

Then, \(\displaystyle H_\text {eff}=\frac{\omega _{\text {eff}}}{2}\,\hat{\sigma }_3\) and

$$\begin{aligned} \mathrm{e}^{itH_\text {eff}}\hat{\sigma }_j\mathrm{e}^{-itH_\text {eff}}=\sum _{j,k=1}^3\mathcal{U}^{jk}_\text {eff}(t)\hat{\sigma }_k,\quad \mathcal{U}_{\text {eff}}(t)=\begin{pmatrix}\cos (\omega _{\text {eff}}t)&{}\quad -\sin (\omega _{\text {eff}}t)&{}\quad \!0\\ \sin (\omega _{\text {eff}}t)&{}\quad \cos (\omega _{\text {eff}}t)&{}\quad 0\\ 0&{}\quad 0&{}\quad 1\end{pmatrix}. \end{aligned}$$
(72)

One can thus rewrite the term \( {\mathbb {N}}[ \varrho (t)]\) as follows:

$$\begin{aligned} {\mathbb {N}}[ \varrho (t)] =-\sum _{j,k=1}^3\int _0^{+\infty }\mathrm{d}u\,\mathcal{Z}_{jk}(-u)\,\left\{ G(u)\,\Big [\hat{\sigma }_j,\, \hat{\sigma }_k\, \varrho (t)\Big ] +G^*(u)\,\Big [ \varrho (t)\,\hat{\sigma }_{k},\,\hat{\sigma }_j\Big ]\right\} , \end{aligned}$$
(73)

where \(G(u)\) is as in (24). By taking into account that \(\xi =1,3\) the coefficients \(\mathcal{Z}_{jk}(t)\) can be regrouped into the following matrix by introducing the projection \(\mathcal{P}=\text {diag}(1,0,1)\):

$$\begin{aligned} \mathcal{Z}(t)=\mathcal{V}\mathcal{P}\mathcal{R}(t)\mathcal{V}^T\mathcal{U}_\text {eff}(t)=\begin{pmatrix} cC+\frac{\Omega }{\omega _{\text {eff}}}sS &{}\quad \frac{\Omega }{\omega _{\text {eff}}}cS-sC &{}\quad \frac{\Delta }{\omega _{\text {eff}}}S\\ \frac{\Omega ^2}{\omega _{\text {eff}}^2}sC-\frac{\Omega }{\omega _{\text {eff}}}cS &{} \quad \frac{\Omega ^2}{\omega _{\text {eff}}^2}cC+\frac{\Omega }{\omega _{\text {eff}}}sS &{}\quad \frac{\Omega \Delta }{\omega _{\text {eff}}^2}C\\ \frac{\Omega \Delta }{\omega _{\text {eff}}^2}sC-\frac{\Omega }{\omega _{\text {eff}}}cS&{}\quad \frac{\Omega \Delta }{\omega _{\text {eff}}^2}cC+\frac{\Delta }{\omega _{\text {eff}}}sS &{}\quad \frac{\Delta ^2}{\omega _{\text {eff}}^2}C \end{pmatrix}, \end{aligned}$$
(74)

where \(c=\cos (\omega _{\text {eff}}t)\), \(s=\sin (\omega _{\text {eff}}t)\) and \(C=\cos (\Omega t)\), \(S=\sin (\Omega t)\).

Finally, by separating the purely dissipative contribution \(\mathbb {D}[\varrho (t)]\) to \( {\mathbb {N}}[ \varrho (t)]\) from the one corresponding to a Lamb-shift Hamiltonian \(H_{LS}\), one gets the right hand side of (63) as follows:

$$\begin{aligned} {\mathbb {L}}[ \varrho (t)]&= -i\,\Big [H_\text {eff}+\lambda ^2\,{H}_{LS},\, \varrho (t)\Big ]+\lambda ^2\,\mathbb {D}[\varrho (t)]\end{aligned}$$
(75)
$$\begin{aligned} \mathbb {D}[\varrho (t)]&= \sum _{j,k=1}^3{K}_{jk}\left( \hat{\sigma }_k\, \varrho (t)\,\hat{\sigma }_j-\frac{1}{2}\Big \{\hat{\sigma }_j\hat{\sigma }_k,\, \varrho (t)\Big \}\right) \end{aligned}$$
(76)
$$\begin{aligned} {K}_{jk}&= \int _0^{+\infty }\mathrm{d}u\,\Big (G(\tau )\,\mathcal{Z}_{jk}(-u)\,+\,G^*(\tau )\,\mathcal{Z}_{kj}(-u)\Big )= {K}^*_{kj}, \end{aligned}$$
(77)

where \(\displaystyle {H}_{LS}=\sum _{j,k=1}^3 {H}_{jk}\,\hat{\sigma }_j\hat{\sigma }_k\), with

$$\begin{aligned} {H}_{jk}=\frac{1}{2i}\int _0^{+\infty }\mathrm{d}\tau \,\Big (G(\tau )\,\mathcal{Z}_{jk}(-u)\,-\,G^*(\tau )\,\mathcal{Z}_{kj}(-u)\Big )= {H}^*_{kj}. \end{aligned}$$
(78)

In order to recast the action of \( {\mathbb {L}}[ \varrho (t)]\) as that of a \(4\times 4\) matrix \(-2\mathcal{L}\) on the Bloch vector \((1, {r}_1(t), {r}_2(t), {r}_3(t))\) as in (37), one considers the linear action of \( {\mathbb {L}}\) on the Pauli matrices \(\hat{\sigma }_{1,2,3}\) and on the identity \(\hat{\sigma }_0=1\): \( {\mathbb {L}}[\hat{\sigma }_\mu ]=\sum _{j=1}^3 {\mathcal{L}}_{j\mu }\hat{\sigma }_j\). With \( {r}_0(t)=1\) because of trace conservation, this gives

$$\begin{aligned} {\mathbb {L}}[ \varrho (t)]&= \frac{1}{2}\left( {\mathbb {L}}[1]+\sum _{j=1}^3 {r}_j(t) {\mathbb {L}}[\hat{\sigma }_j]\right) = -\sum _{j=1}^3\left( \sum _{\mu =0}^3 {\mathcal{L}}_{j\mu } {r}_\mu (t)\right) \hat{\sigma }_j\end{aligned}$$
(79)
$$\begin{aligned} {\mathcal{L}}&= {\mathcal{H}}_\text {eff}\,+\lambda ^2\, {\mathcal{H}}_{LS}\,+\lambda ^2\, {\mathcal{D}}=\begin{pmatrix}0&{}\quad 0&{}\quad 0&{}\quad 0\\ {\mathcal{L}}_{10}&{}\quad {\mathcal{L}}_{10}&{} \quad {\mathcal{L}}_{10}&{}\quad {\mathcal{L}}_{10}\\ {\mathcal{L}}_{20}&{} \quad {\mathcal{L}}_{21}&{}\quad {\mathcal{L}}_{22}&{}\quad {\mathcal{L}}_{23}\\ {\mathcal{L}}_{30}&{} \quad {\mathcal{L}}_{31}&{}\quad {\mathcal{L}}_{32}&{}\quad {\mathcal{L}}_{33} \end{pmatrix}. \end{aligned}$$
(80)

The matrix \( {\mathcal{L}}\) consists of an antisymmetric Hamiltonian contribution \( {\mathcal{H}}_\text {eff}+\lambda ^2\, {\mathcal{H}}_{LS}\), where

$$\begin{aligned} {\mathcal{H}}_\text {eff}&= \begin{pmatrix}0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad \omega _{\text {eff}}/2&{}\quad 0\\ 0&{}\quad -\omega _{\text {eff}}/2&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad -0&{}\quad 0 \end{pmatrix}\end{aligned}$$
(81)
$$\begin{aligned} {\mathcal{H}}_{LS}&= \begin{pmatrix}0&{}\quad \!0&{}\quad \!0&{}\quad \!0\\ 0&{}\quad 0&{}\quad {\mathcal{H}}_{12}&{}\quad {\mathcal{H}}_{13}\\ 0&{}\quad - {\mathcal{H}}_{12}&{}\quad 0&{}\quad {\mathcal{H}}_{23}\\ 0&{}\quad - {\mathcal{H}}_{13}&{}\quad - {\mathcal{H}}_{23}&{}\quad 0 \end{pmatrix}, \quad \left\{ \begin{matrix} {\mathcal{H}}_{12}=&{}\quad 2\,\mathcal{I}m( {H}_{21})\\ {\mathcal{H}}_{13}=&{}\quad 2\,\mathcal{I}m( {H}_{31})\\ {\mathcal{H}}_{23}=&{}\quad 2\,\mathcal{I}m( {H}_{32}) \end{matrix} \right. , \end{aligned}$$
(82)

plus a purely dissipative term

$$\begin{aligned} {\mathcal{D}}&= \begin{pmatrix}0&{}\quad \!0&{}\quad \!0&{}\quad \!0\\ {\mathcal{K}}_{10}&{}\quad {\mathcal{K}}_{11}&{} \quad {\mathcal{K}}_{12}&{}\quad {\mathcal{K}}_{13}\\ {\mathcal{K}}_{20}&{}\quad {\mathcal{K}}_{12}&{}\quad {\mathcal{K}}_{22}&{}\quad {\mathcal{K}}_{23}\\ {\mathcal{K}}_{30}&{}\quad {\mathcal{K}}_{13}&{}\quad {\mathcal{K}}_{23}&{}\quad {\mathcal{K}}_{33}\\ \end{pmatrix},\quad \left\{ \begin{matrix} {\mathcal{K}}_{10}&{}\quad =\mathcal{I}m( {K}_{23})\\ {\mathcal{K}}_{20}&{}\quad =\mathcal{I}m( {K}_{31})\\ {\mathcal{K}}_{30}&{}\quad =\mathcal{I}m( {K}_{12}) \end{matrix}\right. \end{aligned}$$
(83)
$$\begin{aligned}&\left\{ \begin{matrix} {\mathcal{K}}_{11}&{}\quad = {K}_{22}+ {K}_{33}\\ {\mathcal{K}}_{22}&{}\quad = {K}_{11}+ {K}_{33}\\ {\mathcal{K}}_{33}&{}\quad = {K}_{11}+ {K}_{22} \end{matrix}\right. ,\quad \left\{ \begin{matrix} {\mathcal{K}}_{12}&{}\quad =-\mathcal{R}e( {K}_{12})\\ {\mathcal{K}}_{13}&{}\quad =-\mathcal{R}e( {K}_{13})\\ {\mathcal{K}}_{23}&{}\quad =-\mathcal{R}e( {K}_{23}) \end{matrix}\right. . \end{aligned}$$
(84)

Using the expressions in (74), (77) and (78), the matrix entries explicitly read

$$\begin{aligned} {\mathcal{K}}_{10}&= \frac{\Delta }{\omega _{\text {eff}}}\int _0^{+\infty }\mathrm{d}u\int _0^{+\infty }\mathrm{d}\omega \,J(\omega )\,\sin (\omega u)\,\bigg (\sin (\omega _{\text {eff}}u)\sin (\Omega u)\nonumber \\&\quad +\,\frac{\Omega }{\omega _{\text {eff}}}\Big (\cos (\omega _{\text {eff}}u)-1\Big )\cos (\Omega u) \bigg ) \end{aligned}$$
(85)
$$\begin{aligned} {\mathcal{K}}_{20}&= \frac{\Delta }{\omega _{\text {eff}}}\int _0^{+\infty }\mathrm{d}u\int _0^{+\infty }\mathrm{d}\omega \,J(\omega )\,\sin (\omega u)\,\bigg (-\Big (1+\cos (\omega _{\text {eff}}u)\Big )\sin (\Omega u) \nonumber \\&\quad +\,\frac{\Omega }{\omega _{\text {eff}}}\sin (\omega _{\text {eff}}u)\cos (\Omega u) \bigg )\end{aligned}$$
(86)
$$\begin{aligned} {\mathcal{K}}_{30}&= \int _0^{+\infty }\mathrm{d}u\int _0^{+\infty }\mathrm{d}\omega \,J(\omega )\,\sin (\omega u)\,\bigg (-\frac{2\Omega ^2+\Delta ^2}{\omega _{\text {eff}}^2}\sin (\omega _{\text {eff}}u)\cos (\Omega u)\nonumber \\&\quad +\,2\frac{\Omega }{\omega _{\text {eff}}}\cos (\omega _{\text {eff}}u)\sin (\Omega u)\bigg ) \end{aligned}$$
(87)
$$\begin{aligned} {\mathcal{K}}_{11}&= 2\int _0^{+\infty }\mathrm{d} u\int _0^{+\infty }\mathrm{d}\omega \,J(\omega )\,\cos (\omega u)\coth \left( \frac{\beta \omega }{2}\right) \,\left( \frac{\Omega }{\omega _{\text {eff}}}\sin (\omega _{\text {eff}}u)\sin (\Omega u)\right. \nonumber \\&\left. \quad +\,\frac{\Omega ^2}{\omega _{\text {eff}}^2}\cos (\omega _{\text {eff}}u)\cos (\Omega u)+\frac{\Delta ^2}{\omega _{\text {eff}}^2}\cos (\Omega u) \right) \end{aligned}$$
(88)
$$\begin{aligned} {\mathcal{K}}_{12}&= -\frac{\Delta ^2}{\omega _{\text {eff}}^2}\int _0^{+\infty }\mathrm{d}u\int _0^{+\infty }\mathrm{d}\omega \,J(\omega )\,\cos (\omega u)\, \coth \left( \frac{\beta \omega }{2}\right) \,\sin (\omega _{\text {eff}}u)\cos (\Omega u)\end{aligned}$$
(89)
$$\begin{aligned} {\mathcal{K}}_{13}\!&= \!\frac{\Delta }{\omega _\text {eff}}\int _0^{+\infty }\mathrm{d}u\int _0^{+\infty }\mathrm{d}\omega \,J(\omega )\,\cos (\omega u)\coth \coth \left( \frac{\beta \omega }{2}\right) \,\left( \!-\frac{\Omega }{\omega _{\text {eff}}}\sin (\omega _{\text {eff}}u)\cos (\Omega u)\right. \nonumber \\&\left. \quad +\,\sin (\Omega u)\Big (\cos (\omega _{\text {eff}}u)-1\Big )\right) \end{aligned}$$
(90)
$$\begin{aligned} {\mathcal{K}}_{22}&= 2\int _0^{+\infty }\mathrm{d}u\int _0^{+\infty }\mathrm{d}\omega \,J(\omega )\,\cos (\omega u)\coth \left( \frac{\beta \omega }{2}\right) \,\left( \cos (\omega _{\text {eff}}u)\cos (\Omega u)\right. \nonumber \\&\left. \quad +\,\frac{\Omega }{\omega _{\text {eff}}}\sin (\omega _{\text {eff}}u)\sin (\Omega u)+\frac{\Delta ^2}{\omega _{\text {eff}}^2}\cos (\Omega u) \right) \end{aligned}$$
(91)
$$\begin{aligned} {\mathcal{K}}_{23}&= -\frac{\Delta }{\omega _{\text {eff}}}\int _0^{+\infty }\mathrm{d}u\int _0^{+\infty }\mathrm{d}\omega \,J(\omega )\,\cos (\omega u)\coth \left( \frac{\beta \omega }{2}\right) \,\left( \sin (\omega _{\text {eff}}u)\sin (\Omega u)\right. \nonumber \\&\left. \quad +\,\frac{\Omega }{\omega _{\text {eff}}}\Big (1+\cos (\omega _{\text {eff}}u)\Big )\cos (\Omega u)\right) \end{aligned}$$
(92)
$$\begin{aligned} {\mathcal{K}}_{33}&= 2\int _0^{+\infty }\mathrm{d}u\int _0^{+\infty }\mathrm{d}\omega \,J(\omega )\,\cos (\omega u)\coth \left( \frac{\beta \omega }{2}\right) \,\left( \frac{2\Omega ^2+\Delta ^2}{\omega _{\text {eff}}^2}\cos (\omega _{\text {eff}}u)\cos (\Omega u)\right. \nonumber \\&\left. \quad +\,2\frac{\Omega }{\omega _{\text {eff}}}\sin (\omega _{\text {eff}}u)\sin (\Omega u)\right) ; \end{aligned}$$
(93)
$$\begin{aligned} {\mathcal{H}}_{12}&= \int _0^{+\infty }\mathrm{d} u\int _0^{+\infty }\mathrm{d}\omega \,J(\omega )\,\cos (\omega u)\coth \left( \frac{\beta \omega }{2}\right) \,\left( \frac{2\Omega ^2+\Delta ^2}{\omega _{\text {eff}}^2}\sin (\omega _{\text {eff}}u)\cos (\Omega u)\right. \nonumber \\&\left. \quad -\,2\frac{\Omega }{\omega _{\text {eff}}}\cos (\omega _{\text {eff}}u)\sin (\Omega u)\right) \end{aligned}$$
(94)
$$\begin{aligned} {\mathcal{H}}_{13}&= \frac{\Delta }{\omega _{\text {eff}}}\int _0^{+\infty }\mathrm{d}u\int _0^{+\infty }\mathrm{d}\omega \,J(\omega )\,\cos (\omega u)\, \coth \left( \frac{\beta \omega }{2}\right) \,\left( \frac{\Omega }{\omega _{\text {eff}}}\sin (\omega _{\text {eff}}u)\cos (\Omega u)\right. \nonumber \\&\left. \quad -\,\sin (\Omega u)\Big (1+\cos (\omega _{\text {eff}}u)\Big )\right) \end{aligned}$$
(95)
$$\begin{aligned} {\mathcal{H}}_{23}&= \frac{\Delta }{\omega _{\text {eff}}}\int _0^{+\infty }\mathrm{d}u\int _0^{+\infty }\mathrm{d}\omega \,J(\omega )\,\cos (\omega u)\coth \left( \frac{\beta \omega }{2}\right) \,\left( -\sin (\omega _{\text {eff}}u)\sin (\Omega \tau )\right. \nonumber \\&\left. \quad +\,\frac{\Omega }{\omega _{\text {eff}}}\Big (1-\cos (\omega _{\text {eff}}u)\Big )\cos (\Omega u)\right) . \end{aligned}$$
(96)

In the main text, we have added a superscript “\(\text {Red}\)” to \(\mathcal {L}\), \(\mathcal {H}_{LS}\) and \(\mathcal {D}\) in order to distinguish them from the analogous expressions pertaining to a completely positive dynamics which are obtained in the next appendix.

Completely Positive Master Equation

A physically consistent reduced dynamics can be obtained by a more careful treatment; it leads to a completely positive time-evolution, thus avoiding all the inconsistencies of the Redfield dynamics used in [19]. We again use the projection technique but we follow the analysis of [8] without passing to the interaction representation. By repeating the arguments of the previous appendix, one arrives at the following analog of equation (60):

$$\begin{aligned} \frac{\mathrm{d} \varrho (t)}{\mathrm{d}t}&=-i\,[H_\text {eff},\, \varrho (t)]\nonumber \\&\quad -\,\lambda ^2 \int _0^t\mathrm{d}u\,\mathrm{Tr}_\mathcal{B}\Big (\Big [ {H}_{\mathcal{S}\mathcal{B}}(t),\,\mathbb {Q}\circ \mathbb {U}^{QQ}_{t,s}\circ \mathbb {Q}\Big [\Big [ {H}_{\mathcal{S}\mathcal{B}}(u),\, \varrho (t) \otimes \varrho _\mathcal{B}\Big ]\Big ]\Big ). \end{aligned}$$
(97)

As shown in [8], a sounder strategy than the one that led to equation (62) in the previous appendix consists firstly in formally integrating (97), yielding

$$\begin{aligned} \varrho (t)&= \mathrm{e}^{t\mathbb {H}_\text {eff}}[ {\varrho }] -\lambda ^2 \int _0^t\mathrm{d}u\,\int _0^u\mathrm{d}v\,\mathrm{e}^{(t-u)\mathbb {H}_\text {eff}} \nonumber \\&\quad \times \, \Bigg [ \mathrm{Tr}_\mathcal{B}\Big (\Big [ {H}_{\mathcal{S}\mathcal{B}}(u),\mathbb {Q}\circ \mathbb {U}^{QQ}_{u,v}\circ \mathbb {Q}\Big [ {H}_{\mathcal{S}\mathcal{B}}(v),\, {\varrho }(v) \otimes \varrho _\mathcal{B}\Big ]\Big ]\Big )\Bigg ]. \end{aligned}$$
(98)

Secondly, in changing the double integral into

$$\begin{aligned}&\int _0^t\mathrm{d}v\,\int _v^t\mathrm{d}u\,\mathrm{e}^{(t-u)\mathbb {H}_\text {eff}}\,\Bigg [\mathrm{Tr}_\mathcal{B}\Big (\Big [ {H}_{\mathcal{S}\mathcal{B}}(u),\mathbb {Q}\circ \mathbb {U}^{QQ}_{u,v}\circ \mathbb {Q}\Big [{H}_{\mathcal{S}\mathcal{B}}(v), \, \varrho (v)\otimes \varrho _\mathcal{B}\Big ]\Big ]\Big )\Bigg ]\\&\quad =\int _0^t\mathrm{d}v\,\int _0^{t-v}\mathrm{d}w\,\mathrm{e}^{(t-v-w)\mathbb {H}_\text {eff}}\,\\&\qquad \times \Bigg [ \mathrm{Tr}_\mathcal{B}\Big (\Big [ {H}_{\mathcal{S}\mathcal{B}}(v+w),\,\mathbb {Q}\circ \mathbb {U}^{QQ}_{v+w,v}\,\circ \, \mathbb {Q}\Big [ {H}_{\mathcal{S}\mathcal{B}}(v),\, \varrho (v) \otimes \varrho _\mathcal{B}\Big ]\Big ]\Big )\Bigg ], \end{aligned}$$

and, finally, in going to the slow time-scale \(\tau =t\lambda ^2\), \(\lambda \ll 1\) where, using (65), one replaces

$$\begin{aligned} \mathbb {Q}\circ \mathbb {U}^{QQ}_{v+w,v}\circ \mathbb {Q}\Big [\Big [ {H}_{\mathcal{S}\mathcal{B}}(v),\, \varrho (v) \otimes \varrho _\mathcal{B}\Big ]\Big ]\quad \hbox {by}\quad \mathrm{e}^{w(\mathbb {H}_\text {eff}+\mathbb {H}_\mathcal{B})}\Bigg [\Big [ {H}_{\mathcal{S}\mathcal{B}}(v),\, \varrho (v) \otimes \varrho _\mathcal{B}\Big ]\Bigg ], \end{aligned}$$

so that the second integral with respect to \(\mathrm{d}w\) becomes

$$\begin{aligned} \overline{\mathbb {N}}_v[ \varrho (v)]&= \int _0^{+\infty }\mathrm{d}w\, \mathrm{e}^{-w\mathbb {H}_\text {eff}}\nonumber \\&\times \,\Bigg [\mathrm{Tr}_\mathcal{B}\Big (\Big [ {H}_{\mathcal{S}\mathcal{B}}(v+w),\, \mathrm{e}^{w(\mathbb {H}_\text {eff}+\mathbb {H}_\mathcal{B})}\,\Big [\Big [ {H}_{\mathcal{S}\mathcal{B}}(v),\, {\varrho }_{v} \otimes \varrho _\mathcal{B}\Big ]\Big ]\Big ]\Big )\Bigg ]. \end{aligned}$$
(99)

This yields

$$\begin{aligned} \varrho (t)=\mathrm{e}^{t\mathbb {H}_\text {eff}}[ {\varrho }]-\lambda ^2\int _0^t\mathrm{d}v\,\overline{\mathbb {N}}_v[ \varrho (v)] \end{aligned}$$

that solves the master equation:

$$\begin{aligned} \frac{\mathrm{d} \varrho (t)}{\mathrm{d}t}&= -i\,\Big [H_\text {eff},\, \varrho (t)\Big ]+ \lambda ^2\overline{\mathbb {N}}_t[ \varrho (t)]. \end{aligned}$$
(100)

By proceeding as in the previous appendix, one recasts (100) in the time-independent form

$$\begin{aligned} \frac{\mathrm{d} \varrho (t)}{\mathrm{d}t}&= \overline{\mathbb {L}}[ \varrho (t)]=-i\,\Big [H_\text {eff},\, \varrho (t)\Big ]+\lambda ^2\, \overline{\mathbb {N}}[ \varrho (t)]\end{aligned}$$
(101)
$$\begin{aligned} \overline{\mathbb {N}}[ \varrho (t)]&= -i\,\Big [\overline{H}_{LS},\, \varrho (t)\Big ]+\lambda ^2\,\sum _{j,k=1}^3 {K}_{jk}\Big (\hat{\sigma }_k\, \varrho (t)\,\hat{\sigma }_j-\frac{1}{2}\Big \{\hat{\sigma }_j\hat{\sigma }_k,\, \varrho (t)\Big \}\Big ), \end{aligned}$$
(102)

where \(\overline{H}_{LS}=\sum _{j,k=1}^3 {H}_{jk}\hat{\sigma }_j\hat{\sigma }_k\) and, with respect to (77) and (78), the coefficients now read

$$\begin{aligned} {H}_{jk}&= \frac{1}{2i}\int _0^{+\infty }\mathrm{d}u\,\Big (G(u)\,\mathcal{Z}_{kj}(u)\,-\,G^*(u)\,\mathcal{Z}_{jk}(u)\Big )= {H}^*_{kj}\end{aligned}$$
(103)
$$\begin{aligned} {K}_{jk}&= \int _0^{+\infty }\mathrm{d}u\,\Big (G(u)\,\mathcal{Z}_{kj}(u)\,+\,G^*(u)\,\mathcal{Z}_{jk}(u)\Big )= {K}^*_{kj}. \end{aligned}$$
(104)

Remark 5

In the Bloch representation, the generator \(\overline{\mathbb {L}}[ \varrho (t)]\) corresponds to the action on the Bloch vector \((1, {r}_1(t), {r}_2(t), {r}_3(t))\) of a \(4\times 4\) matrix \(\overline{\mathcal{L}}= {\mathcal{H}}_\text {eff}\,+\lambda ^2\,\overline{\mathcal{H}}_{LS}\,+\lambda ^2\,\overline{\mathcal{D}}\), whose coefficients are all equal to the ones in (85)–(96) apart from \( {\mathcal{K}}_{10}\), \( {\mathcal{K}}_{12}\), \( {\mathcal{K}}_{13}\) and \( {\mathcal{H}}_{23}\) which have opposite signs.

The formal solutions to (101) are given by

$$\begin{aligned} \varrho (t)=\mathrm{e }^{t\overline{\mathbb {L}}}[\varrho ]=\mathrm{e}^{t\mathbb {H}_\text {eff}}[\varrho ]+\lambda ^2\int _0^t\mathrm{d}s\,\mathrm{e}^{t\mathbb {H}_\text {eff}}\circ \overline{\mathbb {N}}[ {\varrho }_s] \end{aligned}$$
(105)

with \(\mathrm{e}^{t\mathbb {H}_\text {eff}}[\varrho ]=\exp (-it\, H_\text {eff})\,\varrho \,\exp (it\, H_\text {eff})\).

On the slow time scale \(\tau =\lambda ^2\,t\), one rewrites

$$\begin{aligned} \mathrm{e}^{-t\mathbb {H}_\text {eff}}\circ \mathrm{e}^{t\overline{\mathbb {L}}}[\varrho ]=\varrho +\int _0^\tau \mathrm{d}u\, \Big \{\mathrm{e}^{-u/\lambda ^2\mathbb {H}_\text {eff}}\circ \overline{\mathbb {N}}\circ \mathrm{e}^{u/\lambda ^2\mathbb {H}_\text {eff}}\Big \}\Big [\mathrm{e}^{-u\mathbb {H}_\text {eff}}\circ \mathrm{e}^{u\overline{\mathbb {L}}}[\varrho ]\Big ]; \end{aligned}$$
(106)

when \(\lambda \rightarrow 0\) the fast oscillations in the term in curly brackets average to zero. This allows one to replace that term by its ergodic average

$$\begin{aligned} \mathbb {N}=\lim _{T\rightarrow +\infty }\frac{1}{2T}\int _{-T}^T\mathrm{d}s\,\mathrm{}^{-s/\lambda ^2\mathbb {H}_\text {eff}}\circ \overline{\mathbb {N}}\circ \mathrm{}^{s/\lambda ^2\mathbb {H}_\text {eff}}, \end{aligned}$$
(107)

which fulfils \(\mathbb {N}\circ \mathbb {H}_\text {eff}=\mathbb {H}_\text {eff}\circ \mathbb {N}\), so that the resulting master equation is

$$\begin{aligned} \frac{\mathrm{d} \varrho (t)}{\mathrm{d}t}= {\mathbb {L}}[ \varrho (t)]=-i\,\Big [H_\text {eff}+\lambda ^2\, {H}_{LS},\, \varrho (t)\Big ] +\lambda ^2 {\mathbb {D}}[ \varrho (t)] \end{aligned}$$
(108)

In the Bloch representation the action of \(\mathbb {N}\) corresponds to that of the \(4\times 4\) matrix

$$\begin{aligned} {\mathcal{N}}=\lim _{T\rightarrow +\infty }\frac{1}{2T}\int _0^T\mathrm{d}s\,\mathcal{U}_\text {eff}(-s)\,\overline{\mathcal{N}}\,\mathcal{U}_\text {eff}(s), \end{aligned}$$
(109)

with \(\overline{\mathcal{N}}\) the \(4\times 4 \) matrix corresponding to \(\overline{\mathbb {N}}\) and \(\mathcal{U}_\text {eff}(s)\) the \(4\times 4\) matrix with \(1,0,0,0\) in the first row and column and, in the rest, the \(3\times 3\) matrix in (72). Then, the action of \( {\mathbb {L}}\) can be represented by means of the \(4\times 4\) matrix \( {\mathcal{L}}=\mathcal{H}_\text {eff}+\lambda ^2\, {\mathcal{H}}_{LS}+\lambda ^2\, {\mathcal{D}}\), where \(\mathcal{H}_\text {eff}\) is as in (81), while

$$\begin{aligned} {\mathcal{H}}_{LS}=\begin{pmatrix}0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad {\mathcal{H}}_{12}&{}\quad 0\\ 0&{}\quad - {\mathcal{H}}_{12}&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0 \end{pmatrix},\quad {\mathcal{D}}=\begin{pmatrix}0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad \mathcal {K}_{11}+ \mathcal {K}_{22}&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad \mathcal {K}_{11}+ \mathcal {K}_{22}&{}\quad 0\\ \mathcal {K}_{30}&{}\quad 0&{}\quad 0&{}\quad \mathcal {K}_{33} \end{pmatrix}.\nonumber \\ \end{aligned}$$
(110)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Argentieri, G., Benatti, F., Floreanini, R. et al. Complete Positivity and Thermodynamics in a Driven Open Quantum System. J Stat Phys 159, 1127–1153 (2015). https://doi.org/10.1007/s10955-015-1210-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-015-1210-4

Keywords

Navigation